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FOREWORD

On behalf of the Editorial Board, I would like to make
an acknowledgement to those branches of our military
establishment whose interest and whose financial sup-
port were instrumental in the initiation of this publi-
cation program. It is noteworthy that this asistance
has included all three branches of our Services. The
Department of the Air Force through the Air Research
and Development Command, the Department of the
Army through the Office of the Chief of Ordnance,
and the Department of the Navy through the Bureau
of Aeronautics, Bureau of Ships, Bureau of Ordnance,
and the Office of Naval Research made significant con-
tributions. In particular, the Power Branch of the
Office of Naval Research has carried the burden of
responsibilities of the contractual administration and
processing of all manuscripts from a security stand-
point. The administration, operation, and editorial
functions of the program have been centered at Prince-
ton University. In addition, the University has con-
tributed financially to the support of the undertaking.
It is appropriate that special appreciation be expressed
to Princeton University for its important over-all role
in this effort.

The Editorial Board is confident that the present
series which this support has made possible will have
far-reaching beneficial effects on the further develop-
ment of the aeronautical sciences.

Theodore von Kdmnn



PREFACE

Rapid advances made during the past decade on problems associated with
high speed flight have brought into ever sharper focus the need for a
comprehensive and competent treatment of the fundamental aspects
of the aerodynamic and propulsion problems of high speed flight, together
with a survey of those aspects of the underlying basic sciences cognate
to such problems. The need for a treatment of this type has been long
felt in research institutions, universities, and private industry and
its potential reflected importance in the advanced training of nas-
cent aeronautical scientists has also been an important motivation
in this undertaking.

The entire program is the cumulative work of over one hundred scien-
tufts and engineers, representing many different branches of engineering

Jand fields of science both in this country and abroad.
The work consists of twelve volumes treating in sequence elements of

the properties of gases, liquids, and solids; combustion processes and
chemical kinetics; fundamentals of gas dynamics; viscous phenomena;
turbulence; heat transfer; theoretical methods in high speed aerodynam-
ics; applications to wings, bodies and complete aircraft; nonsteady
aerodynamics; principles of physical measurements; experimental meth-
ods in high speed aerodynamics and combustion; aerodynamic problems
of turbo machines; the combination of aerodynamic and combustion
principles in combustor design; and finally, problems of complete power
plants. The intent has been to emphasize the fundamental aspects of
jet propulsion and high speed aerodynamics, to develop the theoretical
tools for attack on these problems, and to seek to highlight the directions
in which research may be potentially most fruitful.

Preliminary discussions, which ultimately led to the foundation
of the present program, were held in 1947 and 1948 and, in large measure,
by virtue of the enthusiasm, inspiration, and encouragement of Dr.
Theodore von K~zmn and later the invaluable assistance of Dr. Hugh L.
Dryden and Dean Hugh Taylor as members of the Editorial Board,
these discussions ultimately saw their fruition in the formal establish-
ment of the Aeronautics Publication Program at Princeton University
in the fall of 1949.

The contributing authors and, in particular, the volume editors, have
sacrificed generously of their spare time under present-day emergency
conditions where continuing demands on their energies have been great.
The program is also indebted to the work of Dr. Martin Summerfield
who guided the planning work as General Editor from 1949-1952. The
cooperation and assistance of the personnel of Princeton University Press
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PREFACE TO VOLUME X

and of the staff of this office has been noteworthy. In particular, Mr. H. S.
Bailey, Jr., the Director of the Press, and Mr. R. S. Snedeker, who has
supervised the project at the Press have been of great help. The figures
were prepared by Mr. Zene Anderson. Special mention is also due
Mrs. E. W. Wetterau of this office who has handled the bulk of the
detailed editorial work for the program.

Coleman duP. Donaldson
General Editor

PREFACE TO VOLUME X

This volume deals with the problems of the flows in gas turbines and
compressors. Such flows are complex, and there is an obvious difficulty in
any attempt to describe comprehensively the flow in say, a compressor or
a turbine in an exact and rigorous fashion. The choice of topics for the
Sections and each author's treatment of any one topic reflect this diffi-
culty. Originally, the applicatic of aerodynamic theory to flow through
axial compressors and turbines followed the blade element theory of
propellers. Sections B, E, G and K which discuss sub- and supersonic flow
and unsteady flow in cascades develop this approach. The next step, that
of describing the three-dimensional aspects of the flow, is exemplified in
the ideal flow theory developed in Section C. In Sections F and H the
attempt is made to describe more completely the flow in axial compressor
and turbine stages. With each step towards the final goal the approxima-
tions required increase and the unsatisfactory gape in exact knowledge
become more obvious.

The vast effort which has been expended in experimental research,
development and testing has warranted the presentation of an account of
experimental techniques, Section D. The radial flow turbine and the
centrifugal compressor are briefly described in Sections I and J.

As in one or two other volumes in the Series the dates of completion or
final revision of the articles have stretched over a period of years. Two
manuscripts (Sections K and J) were completed in 1951 and 1952. Sec-
tions B, G, I, E and C were completed in their final form between 1956
and 1958, and the remaining three (H, D and F) were finished in 1960.
It is regrettable that the publication of the earlier manuscripts has been
subject to such vexatious delays. However, although some recent work
has inevitably not been included, it is hoped that some of the,timeless
quality which the authors have aimed at has been achieved.

My sincere thanks go to all the authors for their patience and hard work,
to Dr. Coleman duP. Donaldson for his assistance and his friendly but
firm pressure, and to the Princeton University Press for their careful work.

W. R. Hawthorne
Volume Editor
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SECTION A

INTRODUCTION

W. R. HAWTHORNE

A,1. The Gas Turbine. It is now twenty years since the first flight
of an aircraft powered by a gas turbine. The importance of this event in
the history of aviation may be judged by the astonishing advances which
have been made in the last two decades. The stimulus of the new engine,
simpler and lighter than the piston engine, has made jet propulsion and
high speed flight possible. It has also encouraged the development of other
methods of propulsion: the rocket, the ramjet, and the pulse jet. The gas
turbine, either in the form of a turbojet or of a turboprop engine, is at
present the chief method of aircraft propulsion. The present volume and
Vol. XI of this Series are both concerned with the fundamental aspects
and components of the gas turbine as an aircraft prime mover. Questions
which relate to the performance and design of each different type of engine
are dealt with in Vol. XII.

Historically, the trend from the piston engine to the gas turbine devel-
oped for the same reasons that led to the replacement of the reciprocating
steam engine by the steam turbine. Turbine engines became attractive
as larger powers were required, because, for a given size and weight, they
can swallow a much larger flow of air than piston engines.

For a long time, however, there were difficulties which prevented the
developmnent of turbines using the internal combustion principle. Because
internal combustion engines use air and not a condensing fluid, the com-
pression part of the working process requires considerably more energy
than that required to drive the feed pump in a steam engine. Therefore,
to produce a satisfactory net output of work from an internal combustion
engine, the compressor must be efficient and the temperature at the inlet
to the turbine much higher than in the external combustion steam engine.
The difficulty of making efficient compressors and of producing materials
which could withstand high stresses at elevated temperatures led to the
failure of ealy gas turbine schemes. The price of even partial success was
illustrated by the gas turbine of the Societ6 Anonyme des Turbomoteurs,
which was built in 1905 according to the designs of Armengaud and
Lemale (1, p. 1285; 2, p. 17]. This engine, the first constant pressure gas
turbine to run under its own power, had an efficiency of barely 3 per cent.
Water injection was used at the entry to the turbine for cooling purposes

(3)
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so that the maximum gas temperature was probably in the neighborhood
of 880F. The multistage centrifugal compressor (conssting of 20 stages
or more) had a pressre ratio of 4 and an efficlency of about 60 percent.
(In 1901, an axial flow compressor had been built by Persons, but its effi-
ciency was no more than 60 per cent. The blades were probably stalled [8],
for the compressor was built before the first airplane had flown and at a
time when aerodynamics was in its infancy.)

It was not until the 1920's that compressors of high enough efficiency
to be useful in a gas turbine began to be developed. The improvement in
efficiency is attributable to the use of the growing knowledge of aero-
dynamics of airfoils and airplanes. In the 1930's, materials suitable for
high gas turbine temperatures began to appear and the stage was set for
the first successful gas turbine.

The history of the development of the aircraft gas turbine is given in
XII,A. This volume and Vol. XI consider some of the fundamental aspects
of aircraft gas turbines, particularly their components. Vol. XI is devoted
to the combustion process, to some aspects of materials and mechanical
strength, and to engine performance. The flow in compressors and tur-
bines is the subject of Vol. X.

Compressors, turbines, and combustion chambers are not the only
components in a gas turbine. The intake and the propelling nozzle have
become increasingly important as speeds have been raised. Ducts between
compressors or between the turbine and the propelling nozzle, the dif-
fusers, which are placed after the intake or between the compressor and
the combustion chamber, are components which also require careful de-
sign if losses are to be avoided. Discussion of these components will be
found in VII,E, which deals with the theoretical aspects, and in Vol.
XII, where intakes, diffusers, and nozzles are considered in relation to
the engine of which each forms a component.

In the development of the gas turbine, major efforts in research have
been applied to the axial flow compressor and turbine. The centrifugal
compressor and its mate, the inward flow radial turbine, have been the
subject of research and development, too, but. in spite of its early suc-
cesdul application the centrifugal compressor has gradually given way
to the more complex and costly axial compressor whose efficiency, pres-
sure ratio, and mass flow per unit frontal area are potentially (and
practically) higher.

A,2. Development of Theories of Flow through Compressor and
Turbine Blades. At the beginning of the century, turbines were de-
signed on the assumption of one-dimensional flow through the blade
passages. Bernoulli's equation had by then been extended from incom-
pressible to compressible flows. In fact, the equation for the flow of a
compressible gas through a nozzle (isentropic flow) was first given by

(4)
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St. Venant and Wantsel in 1839 [4). The results were unnoticed until
1867 when Kloster [6] and Rankine [6] rederived the formula for the
critical pressure ratio. The fact that the velocity in the throat was equal
to the local velocity of mound appears to have been recognised first by
Holtsmann in 1861 [7], although Reynolds [8, Vol. 2, p. 311 and Hugo-
niot 191 clarified the whole question in 1885 and 1888. The Swedish engi.-
neer do Laval patented the convergent-divergent nozzle in 1894 and used
it in his steam turbines [10.

Steam turbines designed by these methods were on the whole suc-
cessful, lardy because, in a flow with decreasing pressure, there in no
tendency for the boundary layer to separate. In the axial compressor,
on the other hand, the positive ;resure gradients in the passages between
the blades tend to cause separation. The development of two-dimensional
flow theories startod in the 1920's when axial compressor blades began to
be designed by considering each blade as an isolated airfoil. References
given by Keller [111, Tyler [121, and Howell [181 describe the application
of uirfoil theory to propellers and fans and the development of theories
of two-dimensional flow through cascades or lattices of airfoils. Various
methods were employed later for determining the effects of neighboring
blades. Bets [141, for instance, calculated the corrections to be applied to
the flow about an isolated airfoil by replacing the neighboring blades by
vortices. Weirig [151 determined the potential flow through a cascade of
flat plates and used the results to compute the correction factors. Today
the literature contains descriptions of methods for determining the poten-
tial flow through cascades of blades with arbitrary shapes, or for deter-
mining the shapes of blades for reasonably specified distributions of sur-
face pressure. For compressible flows, Lin [18) has suggested an exact
method, and severial approximate methods are available. The solution of
the mathematical problem still leaves computational difficulties which are
considerable, especially for closely pitched blades such as those found in
turbines. Numerous papers, many of them describing approximate meth-
ods, bear witness to the complexity of the computations. In Sec. B, which
discusses the theory of two-dimensional flow through cascades, consider-
able attention has therefore been paid to approximate methods.

The theory of two-dimensional flow through cascades should be of
great value in predicting the onset of separation. However, control of
the boundary layer by altering the profile shape has only limited possi-
bilities. In a compressor or turbine, the blades are pitched so closely to-
gether that it is possible to consider them as the boundaries of bent,
diverging passages. The diffusion is then determined by the flow inlet and
outlet angles. Howell showed in his summary of cascade data in 1942 [17]
that losses began to increase when the diffusion exceeded a certain value
dependent on the pitch-chord ratio and the flow outlet angle, and that
at low Mach numbers the influence of blade camber and profile was small.
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Furthermore, at the normal Reynolds number and turbulence level in
compressors and turbines, transition of the boundary layer probably occurs
very near the leading edge, so that the blades are not as sensitive to pro-
file shape and Reynolds number effects as they are in the cascade wind
tunnel. Nevertheless, potential flow theory and the requisite boundary
layer predictions have been useful in the selection of profiles. Profile
shape-i.e. blade thickness and camber line-has been found to affect
the performance of cascades at high Mach numbers. At supersonic speeds
the shape of a compressor blade is particularly important (Sec. 0).

The theory of the two-dimensional flow about cascades of compressor
and turbine blades is fundamental to the fluid mechanics of turbo-
machinery because it can be used with fair approximation to represent
the flow about the blades of an axial flow compressor or turbine. In fact,
the flow in any compressor or turbine in three-dimensional; it is neither
axially symmetric nor steady, it is rotational and irreversible, and owing
to the presence of many fixed and moving boundaries there are substantial
boundary layer effects.

About 1930, a number of workers began to apply aerodynamic theory
to the three-dimensional flow in compressors and turbines. The main
question was how the blade shape and setting should vary along its length.
In 1926, Griffith [131 advocated blades with constant circulation, i.e.
blades which would shed no vorticity. It was thought that shed vorticity
might cause loss of efficiency, just as it creates an induced drag in iso-
lated airfoils. Designers of steam turbine blades were interested in ob-
taining the same work output from each particle of fluid. In a flow with
no losses, both of these requirements lead to the same type of flow,
namely, one in which the tangential velocity varies inversely with the
radius between each row of blades. In an annulus with inner and outer
walls of constant radius, the above requirements lead, for incompressible
flow, to streamlines which lie on cylindrical surfaces and to a uniform
axial velocity everywhere. When the velocities are high enough to intro-
duce compressibility effects, the change of density from root to tip will
not be the same as the flow passes through consecutive blade rows. The
streamlines will therefore shift from one radius to another, and there will
be radial as well as axial and circumferential velocities [10. Whittle [18]
assumed that between the blade rows of a turbine the rAdial velocities
and accelerations would quickly vanish, and a condition of "radial equi-
librium" would be established. He showed that the axial velocity would
then be invariant with radius. Blades designed to suit the above con-
ditions are termed "free vortex" blades; it is assumed in their design that
all the radial shift of the flow takes place within the blading.

The free vortex or constant circulation design in the compressor leads
to large frontal areas, if high Mach numbers at the tip of the rotor and
root of the stator are to be avoided. The rotor blades have to be con-

(6)
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siderably twisted to obtain the correct radial variation of the blade angles.
Cautiously, at first, constant circulation blading was abandoned in favor
of designs in which the radial variation of tangential velocity was reduced.
Some compressors have been built with at least one row of blades, about
which the circulation has varied six-fold between hub and tip. In some
turbines, radial displacements of the streamlines have been eliminated or
reduced by making the product of local density and axial velocity invari-
ant with the radius. The resulting "constant specific mass flow" design
introduces radial variation of circulation and work when the turbine
pressure drop is sufficiently large.

In the design of blading with radially varying circulation, it has been
frequently assumed that radial equilibrium is established between the
blade rows, and the axial velocities there have been calculated for the
required distributions of tangential velocity. The angles at inlet and out-
let to the blades are often assumed to be those given by the radial equi-
librium calculation, i.e. the basic assumption is that all radial shift occurs
within the blade passages. Other designers have averaged the inlet and
outlet axial velocities computed on the assumption of radial equilibrium
and have used the average velocity to determine air angles, thereby im-
plying that most of the radial shift occurs outside the blades.

To improve design methods, more exact theories have been presented.
The most exact tend to lead to numerical solutions which are too complex
for use in design. The assumption of axially symmetric flow has accord-
ingly been made (it has been tacitly made in the foregoing account) and
is the basis for the theoretical work which forms a useful improvement
of the "radial equilibrium" theory. See. C contains an account of the
theory of axially symmetric flow through rows of axial compressor or tur-
bine blades. From the theory various approximations can be made, many
of them based on the actuator disk concept, which enable radial variations
in velocities and angles to be more accuicately predicted.

A,3. Ay'al Flow Compressors and Turbines. In the development
of compressors and turbines, various experimental techniques have had to
be evolved, both for examining the over-all and stage-by-stage perform-
ance of multistage units and for determining the behavior of components.
Since the principal tool of the turbo-aerodynamicist has been the cascade
wind tunnel, See. D discusses the layout of an experimental plant, of
instruments, and of two-dimensional and annular cascade wind tunnels.
The intermediate stage between the cascade and the compressor or tur-
bine is the single-stage compressor and turbine, whose equipment and
testing are also described. Some of the problems ot testing multistage
units and engines are also discussed.

The results obtained from numerous cascade wind tunnel tests have
been used to establish design criteria. The theory of two-dimensional flow

(7 )
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through cascades has been found to give satisfactory agreement with
experiment in the low-loss or high LID range of incidence. It is also
possible to use the theory to select profiles which are satisfactory at high
Mach numbers. The theoretical calculations are laborious, however, and
it has been found easier and more direct to test profiles in cascade over
the required range of incidence and then, guided by theoretical results,
to derive semiempirical correlations which simplify the work of the de-
signer. The need for such simplification is more obvious, perhaps, in com-
pressors than in turbines. An eight-stage axial flow compressor requires
that at least 51 profiles be designed (at mean radius, hub, and tip on each
rotor, stator, and inlet guide vane) for operation at the design point. The
closeness to the stall and the effects of compressibility need to be assessed.
During the design work, not only must blades be designed to satisfy cer-
tain flow requirements, but their performance under different angles of
attack and flow Mach numbers should also be known.

Generalizations of cascade data have been devised which, with meth-
ods of interpolation and t, all prediction, represent valuable interpreta-
tions of what would otherwise be an indigestible mass of test results.
Sec. E gives the background and some of the results of this work.

In the theories developed in Sec. B and C, the growth of boundary
layers on the walls of the annulus at the hub and tip of the blade rows
is mentioned. The existence of such boundary layers has been responsi-
ble for considerable difficulty in the design of compressors. By reducing
the effective area of the annular duct, they increase the axial velocities
of the main flow. There is then a reduction of incidence and work com-
pared to the values obtained if the thickness of the wall boundary layers
is neglected. There are opportunities for loss of efficiency and work within
the wall boundary layers as they sweep over the ends of the blades. In a
cascade with solid (i.e. nonporous) walls there is appreciable thickening
of the wall boundary layers when the pressure rise is large, and the stall
of blades of high stagger is often preceded by an apparent separation of
the flow from the walls. When passing through a rotor, on the other hand,
the wall boundary layer thickness often appears to diminish.

The behavior of the wall boundary layer as it passes through a row of
blades is described in Sec. E and F. Secondary flows-i.e. flows in a direc-
tion transverse to the direction of the mainstream-sweep the wall bound-
ary layer into the core of a vortex which trails downstream from the
suction side of the blade passage. A stalled region frequently develops in
the corner between the suction side of the blade and the end wall. Some
analysis of these phenomena has been attempted, but estimates of loss
and boundary layer thickness are still empirical and uncertain.

The application of the theories of two- and three-dimensional flow
and the results of cascade tests to single-stage and multistage axial com-
pressors is the subject of See. F, which describes methods of design and
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of predicting the behavior of a given design at other conditions of oper-
ation. Sec. F also describes phenomena that have not so far been men-
tiotied, such as the effects of tip clearance, stalling, and surging.

Axial compressors are normally built with unshrouded rotor blades
so that there is a clearance at the tip of each rotor. Similar clearances
may be necessary at the hub of stators unless they are shrouded (thereby
changing the type of leakage path). The effect of, leakage through
clearances and seals has been shown to be considerable.'

As the flow through a compressor is throttled (at constant rotative
speed) below a certain value, the compressor stalls or surges. The pres-
sure and efficiency suddenly drops and the flow pulsates-sometimes
mildly and, sometimes, particularly in centrifugal compressors, noisily
with a large amplitude. Stall or surge of the compressor must be avoided
under all conditions of operation. Control over the location of the "surge
line" on the map of compressor characteristics is highly desirable. It ap-
pears to be possible for a number of stages of an axial compressor to stall
without causing the whole compressor to stall or surge. Changes in the
matching of the relative operating ranges of the individual stages in a
compressor have been found to affect the position of the surge line.

A remarkable discovery in the development of the axial compressor
was the phenomenon of rotating or propagating stall. At the date the
Series was first planned, the existence of a propagating stall had not been
properly appreciated. The phenomenon was first described in 1953 1191.
Because of the possibility that rotating stall cells may excite dangerous
blade vibrations, a large amount of work has been, and is being, done
on this problem.

Many of the aerodynamic theories and concepts used in the design of
axial flow compressors are applicable to turbines, for example, the theories
of two- and three-dimensional flow described in Sec. B and C, and the use
of cascade data summarized in Sec. E. Sec. -1 describes the application
of these theories and results to axial flow turbine design. In the turbine,
the gas velocities are often appreciably higher in Mach number than in
the compressor, so that more attention is paid to compressibility effects
in Sec. H than in Sec. F. Because of the higher temperatures, mechanical
stress considerations also more markedly influence the aerodynamic de-
sign in turbines than in compressors, and a balance has to be struck be-
tween weight and performance. Mechanical factors such as fatigue and
differential expansion problems make thick trailing edges on the blades

I As an extreme example, the "contraflow" system proposed by Griffith may be
mentioned. This gas turbine scheme consisted of a number of mechanically inde-
pendent disks, each carrying a row of double-tier blades. Either the inner or outer
tier is a row of compressor blades, the other tier being a row of turbine blades. Neigh-
boring disks rotated in opposite directions. A major difficulty with the scheme is the
problem of leakage and of disturbances due to leakage between the seals separaiting
the tiers of blades.
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desirable. The aerodynamic effects and losses due to thickened trailing
edges are also discussed in Sec. H.

Various means of cooling turbine blades have been suggested, either
tc permit the use of cheaper materials or higher gas temperatures and
consequently of more engine power or thrust. Sec. E contains an account
of the results of work on heat transfer in cascades of turbine blades. The
effects of blade cooling on turbine stage efficiency is not large [201, so that
it has not been necessary to include a discussion of it in Sec. H.

Except in the example of the phenomenon of propagating stall, it has
been assumed that the flows hitherto analyzed have been steady. The
assumption of steady flow has been generally accepted in most theoretical
work on compressors and turbines. However, owing to the relative motion
between successive rows of blades, the flow is far from steady. The impli-
cations for performance and efficiency in the assumption of steady flow
are uncertain. The unsteady effects due to interactions between the blade
rows are discussed in an introductory fashion in Sec. K.

A,4. Radial Flow Turbomachinery. Both the von Ohain He S-3
and the Whittle W-1, the first turbojet engines to fly in Germany and
England, respectively, employed centrifugal compressors, and the He S-3
had a radial inflow turbine. Of the two components, the centrifugal
compressor has been most commonly used in aircraft power plants.
The radial turbine is being used, however, in numerous auxiliary
power plants.

As a consequence of their use, a large amount of research and develop-
ment effort has been spent on radial flow components, with most effort
being devoted to the aerodynamics of the centrifugal compressor. As a
result, the pressure ratio obtainable from a single-stage compressor has
been appreciably increased in the last twenty years, and the efficiency at
pressure ratios of about 4:1 has been raised to 80 per cent or more.

The knowledge of the flow in centrifugal compressors has followed a
pattern of development similar to that of axial compressors, save in one
important respect. It has not been possible to use a wind tunnel to test
elements of the centrifugal compressor. The equivalent of the two-dimen-
sional axial flow cascade is the circular cascade with radial throughflow.
The theoretical methods for solving the potential flow through such a
cascade are known, but the analogy is too different from the impellers or
diffusers that are normally used to be worth pursuing. The diffuser with
a large number of small blades has been found to give a characteristic
with a poorer range of useful operation than the diffuser with a few vanes.
More recently, solutions have been obtained by numerical methods for
the compressible flow in an impeller. But theoretical solutions to the
problem have been hampered by the large boundary layer effects which
occur in the impeller and diffuser passages and by the effects of com-
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desirable. The aerodynamic effects and losses due to thickened trailing
edges are also discussed in See. H.

Various means of cooling turbine blades have been suggested, either
to permit the use of cheaper materials or higher gas temperatures and
consequently of more engine power or thrust. See. E contains an account
of the results of work on heat transfer in cascades of turbine blades. The
effects of blade cooling on turbine stage efficiency is not large [20], so that
it has not been necessary to include a discussion of it in Sec. H.

Except in the example of the phenomenon of propagating stall, it has
been assumed that the flows hitherto analyzed have been steady. The
assumption of steady flow has been generally accepted in most theoretical
work on compressors and turbines. However, owing to the relative motion
between successive rows of blades, the flow is far from ;teady. The impli-
cations for performance and efficiency in the assumption of steady flow
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A,4. Radial Flow Turbomachinery. Both the von Ohain He S-3
and the Whittle W-l, the first turbojet engines to fly in Germany and
England, respectively, employed centrifugal comprcsors, and the He S-3
had a radial inflow turbine. Of the two components, the centrifugal
compressor has been most commonly used in aircraft power plants.
The radial turbine is being used, however, in numerous auxiliary
power plants.

As a consequence of their use, a large amount of research and develop-
ment effort has been spent on radial flow components, with most effort
being devoted to the aerodynamics of the centrifugal compressor. As a
result, the pressure ratio obtainable from a single-stage compressor has
been appreciably increased in the last twenty years, and the efficiency at
pressure ratios of about 4:1 has been raised to 80 per cent or more.

The knowledge of the flow in centrifugal compressors has followed a
pattern of development similar to that of axial compressors, save in one
important respect. It has not been possible to use a wind tunnel to test
elements of the centrifugal compressor. The equivalent of the two-dimen-
sional axial flow cascade is the circular cascade with radial throughflow.
The theoretical methods for solving the potential flow through such a
cascade are known, but the analogy is too different frem the impellers or
diffusers that are normally used to be worth pursuing. The diffuser with
a large number of small blades has been found to give a characteristic
with a poorer range of useful operation than the diffuser with a few vanes.
More recently, solutions have been obtained by numerical methods for
the compressible flow in an impeller. But theoretical solutions to the
problem have been hampered by the large boundary layer effects which
occur in the impeller and diffuser passages and by the effects of corn-
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pressibility. Clearance losses, particularly on small machines, have been
found to be large.

An account of the aerodynamics of the centrifugal compressor is given
in Sec. J. See. I gives a companion account of the radial inflow turbine
which has reached pressure ratios and efficiencies somewhat greater than
those of the compressor.

A,5. Supersonic Compressors. At the inlet to the diffuser vanes of
some centrifugal compressors, velocities above that of sound have been
obtained. The term "supersonic compressor," however, is generally ap-
plied to axial flow compressors in which the inlet velocities relative to
one or more rows of blades are supersonic. The shocks in the blade pas-
sages produce pressure rises that give the supersonic compressor its main
advantage--a high pressure ratio per stage. Unfortunately, the shocks
produce steep adverse pressure gradients which result in losses, owing
either to wall boundary layer separation or to other effects. The efficiency
of supersonic compressors, therefore, has not been high, and their range
of mass flow (at constant rotational speed) has been narrow (see Fig.
G,li and G,lj). The frontal area has been no less than that of axial
compressors, and often somewhat larger. Consequently, the supersonic
compressor has not yet found an application in aircraft gas turbines.2

The supersonic compressor, which is the subject of Sec. G, has beei
included, largely because of its novelty, its interesting principle of shock
compression, and its promise, but not because it has shown signs of super-
seding subsonic axial compressors. Rather, the trend appears to be toward
"transonic" compressors, in which only part of the flow relative to the
blades (generally that towards the tip region) is supersonic. This type of
compressor stage has given very satisfactory results in the first stage or
two of compressors, but is one in which the difficulty of detailed analysis
of the flow is even greater than in those discussed in this volume.
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SECTION B

THEORY OF TWO-DIMENSIONAL FLOW

THROUGH CASCADES

F. S. WEINIG

CHAPTER 1. INTRODUCTION

B,1. The Real Flow and Its Simplification. As a final result, the
aerodynamics of turbomachines should integrate all the factors that con-
tribute to the flow and the energy transfer inside of them. This means
that for given inlet conditions, which are not necessarily uniform and
stationary across the inlet, it is desirable to compute this truly three-
dimensional and nonstationary flow taking into consideration compressi-
bility, viscosity, and clearance effects, as well as the mutual interference
between the stationary and rotating blade rows. This task is so complex
that certain short cuts are essential.

First of all, no consideration is normally given to nonuniform inlet
conditions due to varied angles of attack of the airplane or to unsym-
metric inlet scoops. Also, the influence of the inlet struts and other fea-
tures of a secondary nature are normally neglected. The remaining prob-
lem can then be broken down into three problems:

I. In the first the average flow viewed in a meridional plane is considered,
which brings about the so-called axially symmetric flow pattern used
later as the "basic flow" of the cascades.

2. The next problem considers the flow as if it occurred between adjacent
rotational stream surfaces, as found by the axially symmetric treat-
ment, but which now contains a finite number of blades. By cutting
along these rotational surfaces the two-dimensional problem of cascade
flow is established.

3. The third problem considers the flow as if it could be observed in cross
sections normal to the rotational stream surfaces, that is, in axial
turbomachines, practically normal to the axis of rotation. This brings
about the problems of the so-called "secondary flow," which compen-
sates for the simplifications inherent in the concepts of axially sym-
metric and two-dimensional flow. In the first instance, such a correc-
tion must extend the axially symmetric treatment to allow for some

(13
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exchange of matter and therewith of energy across the axially sym-
metric surfaces. Furthermore, the assumption of two-dimensional cas-
cade flow must be corrected in a manner similar to that which adjusts
the result of the lifting line theory to small aspect ratios in the theory
of the airfoil of finite span.

Although this section is concerned with cascade flow, it seems advis-
able, however, to show how this kind of flow is affected by the axially
symmetric flow problem and in some way to take into account the effects
of the secondary flow phenomenon.

Outside wall Stators (ca o)

,ots (c._ NkoY Inside W1

r

z --.-.

Fig. B,2a. Some stages of a multistage compressor with streamlines
of the axially symmetric flow pattern (schematic).

B,2. Transformation of Flow along Rotational Stream Surfaces
to Flow in a Plane. Let Fig. B,2a represent the streamline pattern of
an axially symmetric flow through some stages of a multistage compressor.
Then the corresponding rotational stream surfaces may each be plotted.
conformally, into an x*, y* plane by

y* =or

S* ( -- (2-1)

where r. is a reference radius of the stream surface under consideration,
0 is the longitudinal (or circumferential) angle, and a is the curve length
of the meridional streamline, with da = dr/sin e, where e is the angle be-
tween the direction of the streamline and the axis.

By this transformation the intersections of the axially symmetric
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stream surfaces with each of the blade rows go over into cascades of
profiles. The profiles of each cascade are equally spaced, provided that
they are correctly designed and manufactured, along straight lines (x =
const), parallel to the cascade axis (Fig. B,2b).

Consider the space between two adjacent axially symmetric stream
surfaces. Let Ab be the small distance between them, AQ = (A./1) AQ.

/Y
9 / -y

Y y+Y

S

y

Fig. B,2b. Cascade of profiles obtained by conformal mapping of the axially
symmetric stream surfaces into the picture plane x*, y*.

the volume flowing between them, and r, the circulation at the inlet of a
blade row, where A. is the density at the reference radius r. and A is the
density as found by computation of the axially symmetric flow. Then the
components of the velocity relative to the blade row of the axially sym-
metric flow in the meridional direction and in the direction of the cir-
cumference are, respectively:

AQ
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and
F'

wk. - + r (2-2)

The angular speed of the blade row is co, which is zero in the case of a
stationary blade row or stator.

For each blade row a basic flow may be defined from the axially sym-
metric flow. This basic flow follows the predetermined axially symmetric
stream surfaces, but its circulation does not change when passing through
a blade row and, therefore, is considered to be equal to the inlet circu-
lation. It might be convenient to choose, each time, the radii at the exit
of the blade row as the reference radius. Hence this basic flow between
two adjacent rotational stream surfaces separated by a small distance is
considered to be a potential flow with, in the case of a rotating blade row
or rotor, a superimposed flow with constant curl or rotation.

Between the velocities along the rotational stream surfaces and in the
picture plane (x*, y*), the following relations exist generally:

r

wl. ---r We (2-3)ra

Thus for the basic flow

w Ab 2ir. Ab

w . + 2 " r-' (2-4)
=lbat 2ir,, +r

Hence for each blade row the transformed basic flow is a potential flow
with, in the case of the rotor, a superimposed vortex flow. In general the
curl of the vortex flow is not constant,

curl W,., = - = -2, sin e (2-5)= x* O9y*=

except in the case where ()2sin e=const

curl Wb..i. const

This case is practically uninteresting, except when e = 0, i.e. in strictly
axial flow or when r = const for which curl Wb.1, = 0.

By the action of the blades, the basic flow is changed to the flow in
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Fig. B,2c. Basic flow in the range of a cascade which, for a rotor,
in the case of radial components, is not a potential flow.

which the profiles are streamlines. This relative cascade flow, therefore, is
obtained by superposition of the basic flow and the vane flow (Fig. B,2c;
B,2d; and B,2e).

The expression vane flow may be chosen since this flow is originated
by the vanes or blades, whereas the basic flow exists without the influ-
ence of the vanes and corresponds only to the predetermined axially sym-
metric stream surfaces and to the inflow condition. These are given in
the case of each blade row by the flow volume A, by the inlet circu-
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-!

Fig. B,2d. Vane flow caused by action of the blade row which is, in the inviscid
case, a potential flow. It has vanishing velocities in front of the cascade and velocities
in circumferential direction only in the rear.

lation r1 , and, in the case of a rotor, by the angular speed w. The vane
flow is a potential flow if viscosity is neglected.

The substitution of the abbreviations,

Ab z 0.abm
Ab Ab

- A(x) (2-6)

yields the differential equations for the vane flow

c u r l -, _ . . 0 ( w , ) ,. =)0

_!_ * Ox*
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Fig. B,2e. Relative flow through a cascade obtained by superposition of the vaute
flow on the basic flow. It has profiles as streamlines and is identical upstream with
the basic flow.

and

div W = .... + = 0 (2-7)
ax* + Oy*

Here it is assumed that the circumferential changes of the density may
be neglected. In the case where these changes must be considered,

= Ab

is to be replaced by
A*, ( = Ab p

Abm pm

where p is the local density and p. is the corrected average at the refer-
ence point. The usefulness of such corrections, however, is somewhat im-
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paired by those effects already neglected, in order to establish the axially
symmetric flow pattern.

For the vane flow a potential function 1P.... and a stream function ....
may be introduced by

Ox* 8Y

O- 1 a(2-8
ay* . "x*

For the basic flow a stream function also exists:

2rr,,ab,, --mf r + r (

where r = r(x*) and A = p(x). A potential function of the basic flow
exists in the case of stator blading only.

Applying Eq. (2-6) to Eq. (2-7) and using the Laplace operator

a2  
02

ax *2 + Oy2

it is found that
= .... d(ln )
A x* dx*

A& a..... d(ln ) (2-10)CIX ...=a* aX* (-0

These are the differential equations which should be solved with the
boundary condition

(w.) a.. = - (Wn)b., (2-11)
where

- I OIq'/bO _ , (Pn
(WO)b..,, = -7

s On

with s and n respectively taken along, and normal to, the profile contours.

B,3. Approximate Treatment of Flow Induced by the Blades
(Vane Flow). Since the exact solution of these equations is quite com-
plicated, an approximation is usually made. For this purpose let

Ws- WO + W.dd (3-1)
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where
div (Awe) 8(AWox.) + (Aweo,.)

= ax* + ay*

curl (pwo) -(Auwo,.) _ (wo.) (3-2)0y* aOx*(-)

with the boundary condition

Aw0,, = - (Wn)b. -- bm . (3-3)

Then
8lWe 2 . dwo,, I / Oo.) NO(Av".) d(I/A)

curl wo - + two2 .

A' dx*x

Hence for Wdd

div (A W.d) = 0
_wo 8. d8

curl (AW.dd) = - curl we A- dx (3-4)
Furthermore,

1P.. = 4o + #.dd (3-5)

At the profile contours, 4.dd = 0. While the vane flow has a stream func-
tion and a velocity potential function, the approximate flow (0) and the
additional flow (add) have only a stream function. There exists, however,
a potential 4 o of the mass flow vector vo = Awo.

Hence the approximate flow is equivalent to a plane two-dimensional
flow of an incompressible medium with

Oc o o /,o

ax* ay*ve11. = - = - y,_

Y a (3-6)

(This flow is considered in Chap. 2.) The error occurring when 4'o is taken
for ,. is described by Eq. 3-4 [1]. No consideration is given to this error
in the following discussion. It should also be noted that the flow through
the blade rows is treated here as though the axial spacing were very large,
that is, their mutual and essentially nonstationary interference is dis-
regarded here.

Secondary flow in the blade pa8sages. Having shown how the axially
symmetric flow problem affects cascade flow, we now consider how the
cascade flow might be modified to adjust it for some effects of the sec-
ondary flow phenomenon.
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The entering flow is changed by the action of the blades while pass-
ing the blade row into the exit flow. At a location sufficiently far down-
stream of the blade row, the changes of circumferential and radial com-
ponents are represented by the flow pattern of Fig. B,3a, which may be
called the induced vane flow. There exist circumferential velocity compo-
nents that are not at all constant in the circumferential direction. In
addition there are also radial velocity components that vary along the
circumferential direction and that cannot be covered by the axially sym-
metric treatment. At the exit of the blade row, this would correspond to

Fig. B,3a. Effect of blading on the flow under consideration. Under the influence of
wall boundary layers, for instance, the circulation is not constant along the radius.

the flow pattern shown in Fig. B,3b where the circumferential velocities
would not change circumferentially. Let A(W),.... be the circumferential
components and A(We), the components on the trails of the trailing edges.
The flow pattern resulting from the radial velocity components and the
difference A(We), - AWe (Fig. B,3c) might be called the secondary vane
flow. With

r dO = 8

being the spacing of the blades, the circulation around a radial blade
element is

F = r ,AWoo

When expressing this circulation by A(W), an effective spacing may be
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Fig. B,3b. Effect of blading on the flow if flow is treated as axially
symmetric, i.e. disregarding circumferential variations.

4

Fig. B,3c. Deviations from axially symmetric flow because of the finite
number of blades and wall boundary layers, i.e. the aecondary flow.
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defined by 1]1
r~- F(0,--i

In the case of a single wing of finite span, the spacing 8 would be infinite,
but the effective spacing 8.. would be finite. This suggests the treatment
of the flow around an element of a wing of finite span rather as a flow
through an unstaggered cascade of a spacing ratio 8., than as a profile in
infinitely extended flow, thus modifying Prandtl's lifting line theory, espe-
cially in the case of small aspect ratios. The application of this modifica-
tion to the wing of finite span gives quite satisfying results. If the induced
vane flow is established, it may be advisable to extend the idea to the flow
through blade rows and to use blade interference corrections for 8.f/c
rather than a/c, with the stagger of the cascade profiles remaining un-
changed. Secondary flow effects are also considered in C1; E,3; F,5;
and H,8.

CHAPTER 2. GENERAL TREATMENT OF

INCOMPRESSIBLE INVISCID

TWO-DIMENSIONAL CASC IDE FLOW

B,4. The Forces Acting on a Blade in Cascade. Let us consider
the plane two-dimensional flow of an incompressible fluid through a cas-
cade of profiles (Fig. B,4). At a distance sufficiently far upstream and
downstream the pressures are pi and p2 respectively. With p as the den-
sity, Bernoulli's equation, neglecting losses, is 13,4,5]

pi = p, - ipV

P2 = p, - IpV" (4-1)

where V, and V2 are the velocities upstream and downstream and po is
the stagnation pressure.

The pressure change between the upstream and downstream locations
2 -2

-AP = P - P2 = P(V - V ) (4-2)
or with

v1=v2+v20 vI= v+ v2,
also

- .jp = 1(VI, - VI,) (4-3)

where V#,., and V, are the tangential and the meridional or axial velocity
components at the inlet and the exit, respectively.

Consider a strip of the cascade flow corresponding to the spacing be-
tween the adjacent profiles. The streamlines on the sides of this strip are

( 24



B,4 FORCES ACTING ON A BLADE IN CASCADE

0/

0/
/ If ppabsVe

V. V

Vz~e

I pPbsV 2Vo2

Fig. B,4. Origin of the flow forces acting on the
profiles of a cascade and the velocity diagram.

congruent to each other and have equal pressures in corresponding points.
Hence no force results from the pressure along the edges of the strip. Let
Ab be the spanwise extension of the profiles; then the thrust normal to
the cascade axis acting on the profile included in this strip

S = Absip(Val, - Vol) (4-4)

Besides this thrust there is also Pa tangential force T. Let the mass flow
through the strip

m = PAbsV, (4-5)

(2. )



B • TWO-DIMENSIONAL FLOW THROUGH CASCADES

Then the tangential force

T - pAbsV,(Vo, - Vo,) (4-6)

Hence
S . V*, + V,, (47)
T 2V,

This means that the resultant force P = VS' + TI is normal to the
direction of a mean flow velocity

V. = 2 (4-8)
2

of which the tangential component

Ve 2 = Y1j, (4-9)

The resultant force is found to be

P = pAbs(Ve, - Ve,)V (4-10)
The quantity 141

s(Ve, - Va,) 1' (4-11)

is the circulation around each profile. Substitution of I' yields

P = pAbrV. (4-12)

with P perpendicular to V.. By this the Kutta-Joukowski theorem for a
single profile is extended to the profile in a cascade. For a single profile
VI = V2 = V. as s -- o. As in the case of single profiles, cascade profiles
have the force P which is called lift normal to V., the equivalent free flow
velocity. Usually a lift coefficient is defined by

_ L _21'

CL VAbc -2r (4-13)

Therefore for cascade profiles

Ct = - -- (4-14)

B,5. Conformal Mapping of the Exterior of a Cascade of Straight-
Line Profiles into the Exterior of a Circle. The simplest flow
through a cascade of straight-line profiles is that which is parallel to these
straight lines. Let the cascade be located in the z plane, where

z = X+iy

Let s = 27 be the spacing, 7 the stagger, and c the chord of the pro-
files. Let z = iy*e- i, be the cascade axis. Let the leading and trailing

( 26 )



B,5 - ' "'FORMAL MAPPING

edges be located at

=: T + 2wn sin y(51

y = 0 21rn cosy (5-2)
n = 0, ±1, ±2, ±3, . . . (5-3)

zl,2 = :F C + i2rne- i  (5-4)

The complex potential of the parallel flow of unit velocity V. = I through
this cascade is (Fig. B,5a)

xO(z) = 'Po + i40 = z (5-5)

Consider the points
z. = zo + i2rne- i,  (5-6)

to be corresponding points in the congruent strips of this cascade flow.
The complex potential in such corresponding points is then

xo = zo + i21ne-"  (5-7)

Hence the potential and stream functions are

o = Xo + 2rn sin -y (5-8)

41o = yo + 21rn cos -j

From strip to strip, i.e. from n to n + 1, the potential increases by

n, = s sin -y 2ir sin y (5-9)

and the stream function increases by

Eo = s cosy 2r cosy (5-10)

Any strip of the cascade plane z can be mapped conformally into the
inside or the outside of a circle in a plane. The origin and the goal of
the cascade flow are then transformed into two different singular points
S1 and S2, respectively, of the plane.

When circling a singular point, it is found that the potential and the
stream functions of the transformed image of the undi,;turbed cascade
flow change by F0 and E0, respectively. Hence the transformed image of
the origin of the cascade flow must contain a vortex source

Eo = Eo - ir 0 = s(cos y -- i sin y) = 2re- * (5-11)

and the transformed image of the goal of the ?ascade flow must contain
a vortex sink

- = -E- + ir 0 = -s(cosy - i sin ) = -2rc-'t (5-12)

(27 )
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A-p

*X*

/

• g i z= x +iy- z*e - '

~~Z* X* +- i y*-Zeiy

Fig. B,5a. Relations on the straight-line profile
cascade in undisturbed parallel flow.

The radius of the picture circle may be prescribed, as well as the
location of S, and 82. From a multitude of choices, some deserve prefer-
ence for the following reasons:

I. The symmetric arrangement of the singularities, especially when the
transformed image of the profile is the unit circle °= ei- with the
singularities placed symmetrically on the E axis: S1 = R, S2 = + R,
is very helpful in understanding the problem and provides certain sym-
metric properties of the ensuing equations [5; 6, p. 91; 7].

2. Putting one of the singularities at infinity, especially when the trans-
formed image of the profile is the unit circle, r. = ei-, with the other
singularity on the real axis, S, = -a, 82 = a, simplifies the equa-

(28 )
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tions, although this is done at the cost of symmetric properties. In
some cases the appropriate functions are of a simpler nature and easy
to evaluate [7,8,9].

3. The transformed image of the profile may be made a straight line,
especially the real axis, r, = e, with the singularities located in the
lower half-plane relative to the image rL = 0 of the leading edge at

S1 = i(1 - q)e - (1 - q') sin -

S2 = i(1 + q)e'v - (1 - g)sin

and the trailing edge at infinity [101. Alternately the singularities may
be located relative to the transformed image of the stagnation point

= 0, with the image of the trailing edge at tr

S, = 7 - (I - q') sin y + i(l + q)e i'y

St = r - (1 - q') sin Dy - i(1 + q)e'

and the leading edge at infinity.

The latter arrangement results when the hodograph of the flow
through a straight-line profile cascade is used for the derivation of the
conformal mapping function [11]. The first or symmetric arrangement
is used in the following [5].

With R real, the points

= -R and r = +R

are chosen as the transformed images of the origin and the goal. Since the
unit circle in the transformed flow is a streamline, the vortex source E0
and the vortex sink - E0 must be reflected on the unit circle by their
counterparts t 0 at - 1R and -to at +1/R. Therefore the complex
potential of the transformed flow is given by Fig. B,5b

AM() = e-'v[ln (R + r) - In (R - r)]

+ e+'t [In (~+ -In
Hence with

Xo(z) = AM)

the conformal mapping function is
1

" -" e I R (5-13)

where z* = ze+'7, or x* = x cos -y - iy sin y, y* x sin 'Y + iy sin y.

( 29 )
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AA

ER +//R+

In- +/ +' Rn

A / z x i -YFi

L

Fig. B,5b. Conformal mapping of a straight-line profile cascade on the
unit circle with symmetrically located singularities.

900 ..

a (y, R)

700 tan a, tany 

600 ..

a s, 50 - . . -

30' --
200 - 1

0" 10' 20' 30' 40" 50 60' 70- 80" 90'

Fig. B,5c. Relations between N%, R, and y.

S30 )



8,5 CONFORMAL MAPPING

4

R (y, s/c)

C - oy nR2 + 2R cos ot± 1 +2 sin y ton-, 2R 2sin .,

os R 2 -21cosat+ R - I

S3

0 10 200 3Q0 400 50 60 ° 
7Q0 800 9Q0

ty

Fig. B,5d. Relations between IR, %y and 8/C.

The leading and trailing edges of the straight-line profiles are transformed
into the branch points Lt. = e a on the circle. Their locations are
determined by

d*=0=- 1 ;iI

The solution yields (Fig. B,Sc)

tan a65 = tan 7 R2 ± 1 (5-14)

Substitution of L ,, F :e i '" in the mapping function yields z,. = T c/2
and with a 2w (Fig. B,5d)

s£  l os I R _2R cos a., + 1 + 2 sin tan-i 2 Rsina t (-5

Several interesting limiting cases are as follows:

For y/ = 0, a., = 0,
2 -- coth_,R (5-16)

2.312
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For y - 90w, a, = 90° ,

tan_, 2R (-7

For wide spacing c/s -* 0, a., -y, 1

R (5-18)c)4 4

It may be remarked that straight-line cascades may be conformally
mapped into other straight-line cascades of the same spacing if, and
only if, their mapping into the unit circle results in the same value of R.
R therefore plays the same role for cascades as does the modulus of the
elliptic integral in the case of biplane problems.

B,6. Effect of Spacing on the Lift Coefficient of Straight-Line
Profiles in Cascade. Consider the flow through the cascade with an
angle of attack 5. The angle of attack is the angle between the direction
of the free flow velocity V. and the straight-line profiles. Then the com-
plex potential may be considered as the superposition of two parts, the
one a flow xe cos 6 parallel to the straight lines as just considered above
and the other a flow Xr/2 sin 6 corresponding to a free flow velocity normal
to it. The circulation is taken as

ra = r,1 sin 6 (6-1)

and of such a quantity that the trailing edges are confluence points corre-
sponding to the Kutta-Joukowski theorem. The complex potential x* 2 in
the picture plane is then composed of a vortex source at t -+ R

+iEo f +2wie - = 8(sin - + i cos y)

and a vortex sink at =- R

-zEo = -2wie - = -8(sin 7 + i cos y)

and their counterparts +-o and -iE'o in the points t = -1/R and
= +1/R. In addition, the points r -R and r +R contain vor-

tices - Ir,/2 and their counterparts r = -/ R and - = + I 1R contain
opposite vortices +jr, 2 . Then

• = -ie-[n (R + r) - In (R -

+ ie+' I[In (+ In

[In(R + 0 +In (R? - InQ'+- I nQ (6-2)

(32)
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2.5 \ !

2.0 --- /.

o1.5 600__
1.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(siC)eff

Fig. B,6a. Cascade interference coefficient ke for
comparison with single-profile theory.

In the transformed image 1 = + ea -t of the trailing edge

d-- . 0 (6-3)

which determines the circulation r, 2. It is found that

r,/, = 48 R - COS a.V (6-4)
R +1 cos 'Y

In the case of wide spacing,

8 = c ir R, as% = y, R2 -- -- 1

4 ~ R 2 + I

may be substituted, leading to

r./,= 7CV. (6-5)

which is the theoretical circulation around a single straight-line profile
under the Kutta-Joukowski confluence condition (Eq. 6-3) for 8 = 900.
The coefficient of mutual interference of the straight-line profiles in a
cascade (Fig. B,6a) is then

k P.... , 4a R cos a., (6-6)
'.0 , Tc R2 + I cos(

(:,3
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The lift coefficient of a straight-line profile in a cascade therefore is

CL = 2rko sin a (6-7)

Interesting limiting cases are as follows:

For y- 0, a., = 0
28 2R
irc R2 + I

By the substitution of Eq. 5-16,

R= cothc r 2R =tanh reFs R 2 + 2s

ko = 2s tanh -. k6 -8 )
iC 28

For y = 900, a., = 900 (Eq. 5-14)

- 2s 2R sin y tany 2s 2R
ScR 2 - I sin a., tana-., icR -

or (Eq. 5-17)

ko= 2staCtan 2 (6-9)

For wide spacing ko -4 1, corresponding to the definition. For infinitely
narrow spacing k is zero. For finite but narrow spacing, k is proportional
to s/c. Hence for small s/c

ko = o(s/c) (6-10)

Let the deflection coefficient q be defined by (Fig. B,6b)

k o  2R
12s R 2 +1 cos ,, (6-11)

irC cos- y

For narrow spacing 8/c -- 0, R -- 1, 2R/(R 2 + 1) -- 1 and (Eq. 5-14)
tan a.t -- 0, cos a., - 1. Hence

lir = 1 (6-12)

and (Eq. 6-11)
2s1

lim ko = cos (6-13)
A/c--0 ir Cos '

As Fig. B,6b shows, this is a good approximation up to s/C 5- 0.7. LeL
01, 0., and 02 be the angles between the upstream, free stream, and down-
stream velocity directions, respectively, and the normal to the cascade

( .4 )
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axis; then the angle of attack
(6-14)

and (Eq. 4-14)

28 V,, V,3  2iko.,Ssinh (6-15)

or
8cos 0.(tan 2 - tan t) = rko(, ( ) sin (y - 0.) (6-16)

where (Eq. 4-8)
tan0. = '(tan 01 + tan 2) (6-17)

For given values of 81, 0,, and 8/c the stagger angle y of the cascade may
be determined by combining Eq. 6-17 with the results of Eq. 6-6 as they

1.0 -

O0 1.0 2.0 3.0

(s/c).ff

Fig. B,6b. Cascade deflection coefficient q for
comparison with stream filament theory.

are plotted in Fig. B,6a. Generally the angles #I and 02 follow from the
design problem. The spacing ratio sc has to be chosen considering the
applicability of the theory to the real flow.

For narrow spacing (Eq. 6-13, 6-16, and 6-17)

8 8
-cos &.(tan 02 - tan 01 2- Cos 0. 0(tan 02 -tan 0.)

C

= 1 -- sin (y -04)

Hence
tan 02 - tan -y (6-18)

( 35 )
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This means, with ideal flow, that for any profile cascade of small spacing
(s/c < 0.7) the exit angle 02 is independent of the approach angle #I and
is equal to the stagger y of the equivalent straight-line profile cascade.
For less close spacing one may substitute Eq. 6-7 and 6-11 and

V3  V5

V. - cos ( -6) (6-19)

in Eq. 4-14. Then
- V , 2q sin 6

V, cos y cos ( - 6) (6-20)

By some transformation, one finds

sin 5
c si 6 tan-7 - tan (y - 6) (6-21)Cos -Y Cos (,Y - 6

Substitution of

V V.. 1 V., + V., (-2
tan = V0, tan (y- 6) = - =1 V (6-22)VV. 2 V,

yields

V., - V.,= 2q (V* V,, + V,) (6-23)

or
V,- V, = 2q (6-24)V*- V, 1 + q

If V0 = V. tan y and Ve, = V, tan 01 are given by the stagger angle of the
straight-line profile cascade and the inlet condition, then Ve, = V, tan 02,
that is, the exit condition can easily be determined by Eq. 6-24.

The coefficient q, which may be called "the deflection coefficient,"
therefore makes the comparison of cascade theory with stream filament
theory possible.

B,7. Treatment of More General Profiles by Conformal Mapping.

Basic relations leading to conformal mapping functions. If the com-
plex potential

X = X(z) = P + 4i (7-1)
then

S= W (z) = u -iv - we-" (7-2)
dz

and

SdLdz L(z) = In - i(i - ,,.,) (7-3)
Wlrf Wrot

Consider x = x(z) and L = L(z) to be transformed by z( ) from the

( 3(" )
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z plane into a picture plane r. Then

x -x*( (74)
L =L*(r) (7-5)

From this z(r) can be found

Z = dx 4K!q dt (7-6)
J dX/dz J eL*(V

Influence of angle of attack. Let the complex potential of the flow
through a cascade at zero lift conditions be

xo = x0(z) (7-7)
and at an angle of attack 6

x, i xS(z) (7-8)
Let

In / = Lo = Lo(z) (7-9)

and

In dx./dz L& = La(z) (7-10)

Then

A, = L& - Lo = In - i(y - vo) In--w + i(,.f, - Yr,.) (7-11)
Wo Wt00

Along the contours of the profiles,

(v,- YO) - (,.,- V,.,) = 0 (7-12)+ ± = r sign 6 7-2

i.e. the velocity direction is the saipe for both flows, except at that part
over which the stagnation point has migrated with the change of the
angle of attack. There it is changed to the opposite direction.

When the profile of the z plane is mapped into the unit circle of the
plane, the stagnation point may change its location from Eo = e- '*' to

E, = e-i(at+2a' ) . Then [51

A,*( ') = L'( ) - L*(') = n " - In_ 7-13

and for points on the profile, =e ,

ei e--/(ast+26*) Wref6

L*(') =L '() - Lo() = In - In 2
e - e- Wre *

sin a + )
= In 2 I - * nW--

sin a +4 C'. WrGfm2

(7-14)

(37)
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Profiles for prescribed velocity distribution. On this may be based the
solution of the indirect problem of finding a cascade which for a given
value of R, a.,, and 8* has a prescribed but compatible velocity distribu-
tion. If, except for a constant, L*(r) is given along the unit circle, L*(r)
can also be determined. L*(r) may be established by determining the
potential along the picture circle and by prescribing In (w/w,(0)).

Generally a power series may be used to represent L *(r):

LO() = Co + L, + L + " (7-15)

where the coefficients Co, C1, and C2, etc., may be found by harmonic

analysis. However, the condition

Lo(± R) = Lo(- R) (7-16)
must be fulfilled to obtain an Ls*(r) which is compatible. Therefore it is
necessary [51 that

C3  C5
C, + L3 + + .. 0 (7-17)

If this is not the case, L, (r) or L (r) has to be adjusted.
Profiles by the inverse method. Another use of the relations of Eq. 7-3

is the inverse method of the production of mapping functions for profile
cascades [5,1,13,14]. Let,

L(= (r) -- 7 ln.( - C.) (7-18)

where
Y, 0 (7-19)

Y, 0 (7-20)
irC.+R

and
ICI _ 1 (7-21)

if
= T C 1 = CT + e'a"

K2 = L -7 C 2 = CL 6 = -

K= 7 Ca = -ea

then the resulting profiles will have wedge-shaped trailing and leading
edges, the wedge angles being icr and ICL. The other values of ic, and C.
have then to be chosen so as to fulfill the previously stated compatibility
conditions (Eq. 7-19, 7-20, and 7-21). Since (Eq. 5-12)

dxo*(r) I I-' )r. + '.d* + R R. - + e+' 1
ds) RI +1

(38)
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it is found by integration that
f dx () /d d

Z = J d dz (7-22)

In the case of blunt or cusped leading and trailing edges, the integratiou
can easily be carried through analytically. For generally wedge-shaped
trailing or leading edges numerical methods have to be used, and since
these profiles are derived from prescribed velocity distributions, it is easy
to analyze them.

Mapping of arbitrary profiles. Although this method leads only in a
sort of inverse way to cascades of given profile, it is possible by a proper
choice of the C. at least to approximate any given profile having rounded
nose and tail with a relatively small number of terms. By such an approxi-
mation, the real profile would be transformed into a circle-like figure in
the picture plane. By the usual numerical methods, such a near-circle can
be transformed easily into a true circle [15,161.

Thin, slightly cambered profiles. If the real and imaginary parts of a
function of a complex variable are interpreted as the velocity potential
and the stream function, then the real (R.P.) and imaginary (I.P.) parts
of the kth derivatives are the (k - 1)st derivatives of the velocity com-
ponents iai the direction of the real and negative imaginary axes. For
slightly cambered profiles, which deviate little from the real axis and are
described by a polynomial of nth order, the imaginary part of the nth
derivative of the complex potential is constant in first order approxi-
mation [17]. It is possible to establish such functions of the complex
variable in the case of single as well as cascade profiles. Integration then
yields the intended results. While the method is not needed for single
profiles, it is useful for the cascades of profiles. It may also be applied to
circular arc profiles. For these profiles at smooth flow co ]itions one finds

d2X *,,(2) iel- C r" d 2
dWz--- = R-C , 0 -FO

ied 1 1 (e1.2 ie(C d - R2  (7-23)

- 2 -' - E, R' - E -2(R2 - E2.1 ) -- E (-)

dx *() ie'YC[(ei'/R) + c-i'R] C ddzR2 E2t f r 1J.

ic7C i-fl R-E e In - (7-24)

2 R - E2

<39)
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I0.2

1011 0 2 !0 3 10 40 50 60 70 80 90

Seff
Fig. B,7a. Coefficient ju for computation of the angle deviation for

smooth flow through a circular arc profile cascade.

Fo; r ei

R.P. {eiY In } (7-25)

Let

C 8y 'R) + -~ ' Re2 (7-26)

Then

=P -LP.x-() = '.5 x 5

y f ='x P x Y (7-27)

For x T T

Y, V

= 0

y -o

The resulting cascade profiles are of the second order, i.e. parabolic or,
in the first order, circular arcs of center angle 0 -=yt

( 40 \,
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N Se

00 10 200 300 400 500 600 700 800 90'

Fig. B,7b. Coefficient N for computation of angle deviation from the

rduofcurvature of the profile camber line.

V2 v/2 co y nR - 1(7-28)

The difference between these directions and those of the leading and trail-
ing edges i3 called angle exaggeration or deviation (Fig. B,7a), and

M = / I + 1 (7-29)
JA 8ccos y In R 2 

+-

may be called the coefficient of angle exaggeration or deviation [4,51.

( 41 )
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The distribution of the x components of the velocity and therefore a
first order approximation to the tangential velocities on the profile is
given by:

- = I- Y sin yR.P.|In --i+ Cos,-fI.P. In,---_iU0;/- 1,

V s/ sin. n-y I.P. nniOT 2 7_ [-0 RYJi

=1 8,- R.P. In e- -- cos It (7-30)

The coefficient ;A also gives the ratio of deflection 0 under a smooth flow
condition to the center angle 0. of the circular arc:

I-2!N) (7-31)

By the use of N (Fig. B,7b) one finds the distance Al of the point on the
profile from the leading or trailing edges, respectively, where the profile
has the same direction as the approach or the exit flow:

Al = Nt (7-32)

0.5 02
kl10

0o 0.5 1.0 1,5 2.0 2.5 3.0 .5 4.0
s/c

Fig. B,7c. Cascade interference coefficient k, for circular are
profiles with smooth inflow conditions.
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Fig. B,7d. Ratio k,/k 0 for computation of zero lift

condition of circular arc cascades.

With some degree of approximation, this holds also if the profiles are not
strictly circular arcs, at least if there is sufficiently high solidity [18].
The lift coefficient cL for smooth flow conditions of the circular arc pro-
file in the cascade compared to the single circular arc profile follows from
Fig. B,7c:

k CL 4s 1 /1-2s
Cri=, I 1-2- cN (7-33)

The angle of attack of circular arc profiles measured from the chord is
zero for smooth flow. Hence the angle of attack for zero lift is

0l0

0 0. 5 4. (7-34)

The quotient k1 /k0 is shown in Fig. B,7d [5,19].

B,8. Representation of Profiles by Rows of Singularities.

Theoretical basis. Instead of treating a profile cascade by conformal
mapping of a cascade strip into the exterior or interior of a circle, there
also exists the possibility of making a more direct use of the periodicity
of the flow. The complex potential of a row of vortices of equal circu-
lation h along a straight line z Izle c with equal spacing is fo0]

k) = 4 In sinh e-2! (8-1)

(43 4
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If a profile is considered to be a fluid line separating the fluid flowing
mtside of the profile from a fluid at rest in its inside, then this fluid line
is a vortex sheet and each element d8 carries the vortex

dr - ± w(z.)ds (8-2)
the positive or negative sign denoting whether w is in a direction of d8 or
opposite to it. Hence the complex potential of the cascade flow to be
superimposed upon the undisturbed parallel flow becomes

X(z) = T.- w(z.) In sinh e-O(z - z,)ds (8-.)

Thin slightly cambered profiles. In the case of infinitely thin cambered
profiles, Eq. 8-3 transforms [21,22,23,24,25,26,271 to

x (z) = (to, - o,) In sinh e -0(z - z.)ds (8-4)

In the case of small camber, the profile almost coincides with the chord,
which is considered to be in the direction of the x axis. Different assump-
tions for the vortex or lift distribution y = (w. - w,) = -V(s) then lead to
different profiles.

If XL/(c/2) = - 1 and XT/(c/ 2 ) = +1, and if cos a = x/(c/ 2 ) is sub-
stituted, the distributions

yo - tan a

= sin a

72 = sin 2a

etc., have been investigated. The resulting component profile cascades
have then been superimposed so as to yield cascades of straight-line pro-
files under an angle of attack, cascades of circular arc profiles, or S-shaped
profiles under smooth flow conditions.

The thicknecs of the profiles may be treated in the following way
[28,291. In zero order approximation in smooth flow and at zero camber,
the velocity along the profiles may be considered constant W. = W, = u.
Then the vorticity along the suction side . and along the pressure side,
may be replaced by dipoles having the moment X(x) = t(x) "u of this
vorticity, where t(x) is the local thickness. Hence the contribution of the
profile thickness of a slightly cambered profile to the complex potential is

1 (TrdX(z.)

Xt(Z) = 4L d In sinh e -10(z - z.) dz.

' f X(z.) coth e-is(z - z.) dzo (8-53

K44
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and the complex potential of the cascade flow becomes

X-+ x (8-)
In this way, the cascade problem may be linearized [2). Since

In sinh e-(z - z.) [In sinh e-(z - z.) - In (z - z,)] + In (z - z.)
(8-7)

e0 coth e-4Cz - Z.) [e10 coth e-'(z - z.) + --+ (8-8)

it is also possible to treat separately the properties of the single profile
and the influence of stagger and spacing. This linearization, however, is
not always sufficient, and then the problem must be defined by an inte-
gral equation.

Exact treatment by integral equation [80,81]. Consider that the undis-
turbed parallel flow t has normal components on the profile surfaces: The
perturbance a by the profiles must have opposite and equal normal com-
ponents w. = clip/Oaq = - a,/ap. in order to obtain the profiles as
streamlines by superposition. Besides the normal components, the per-
turbance flow also has tangential components. Then for the potential of
the perturbance

t,.(X, Y) - 1 ,) I.P. IIn sinh e-((z - z.)Id8

+± V 8 R.P. IIn sinh e-*(z - z.)Ids (8-9)

and on the profile (z, y --* x,, yO)

1P(z., Ye) = o(s) I.P.ln sinh o-O(z, - z.)Ida

+l 1 a s R.P. In sinh o-'(o - z.)Ids (8-10)'Jr Os "

With 8Vo(s)/On = -8O+(8) /n given by the undisturbed parallel flow the
last equation is an integral equation for the determination of 'P.(8). Since
the corresponding homogeneous problem has a solution which is the pure
circulating flow, one may fulfill the Kutta-Joukowski confluence condi-
tion by prescribing ap/Os to be zero at the trailing edge [15].

Another possibility of reducing the problem of the flow through a
given cascade to an integral equation is by the use of Eq. 7-3 [38,38]:

L(z) - In dx/dz - In - iv (8-11)
wrfl Worof

If the front and rear stagnation points are also prescribed, the imaginary
part v = I.P.ILI is known and the real part In w/w,., - R.P.11, has to
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be determined. For a cascade, if constants are properly chosen

L(z) = L(z.) coth [e- 0 (z - z.)]dz. (8-12)

Hence

In w/w,.f (o) in to (s)R.P.Icoth [e(z - z.)Ilds
wret

- 0 P(s)I.P.Icoth [e-lw(z - z.)]',o (8-13)

B,9. Methods of Flux Plotting. The differential equation

'L = 0
occurs in various fields and when a potential flow problem must be solved,
one may solve instead an analogous problem in another field [341. Two of
these analogies are especially important: the analogy of the electric field
where the voltage is analogous to the velocity potential or to the stream
function of the ideal flow and the analogy of the highly viscous fluid
where the static pressure is analogous to the velocity potential or to the
stream function of the ideal flow. In the use of electric analogy, either
liquid or solid electrolytes may be usw. the latter preferably in the form
of conducting paper. The analogy of highly viscous fluid uses the flow
between parallel plates placed so close together that the velocities be-
come so small by the effect of the viscosity that their squares are negli-
gible compared to the pressure differences.

A disadvantage of these analogies is the impossibility of directly
imitating circulatory flow. This can be done only if the stream function
is made analogous to the electric potential of the electric field or to the
static pressure of the viscous fluid, respectively. Other analogies have
also been attempted, e.g. in the magnetic field, but, the obtainable accu-
racies have been insufficient.

There are advantages in the graphical or mechanical methods [341 of
flux plotting. They give expert, satisfying results, after some practical
training and experience, especially if an accurate solution for similar
boundaries is available. In this case, one has to apply the flux plotting
only to the difference. A preferable way to obtain useful flux plots con-
sists first in the determination of an approximate flux plot. This flux plot
is then evaluated for its isoclines, i.e. for the lines of constant flow direc-
tion. The isotaches In w/w,.f, i.e. the lines of constant magnitude of veloc-
ity, are drawn and the whole plot improved in order to yield a field of
small curvilinear squares (Eq. 7-3). The velocity distribution found in
this way is then used along any of the previously approximated potential
lines to establish an improved distribution of the stream function along
these potential lines [5]. In this way, an improved flux plot is found which
may be further improved in a similar way. The compatible flow direc-
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tions upstream and downstream are found from the differences of stream
function and potential at the front (1) and trailing (2) edge stagnation
points of adjacent profiles n and n - 1, respectively,

ta ii= 'i1(,,+1 - '1,1(,u) (9-1)t a n 0t ,2 =- ( t ( ,+2 ) -- V i m ( )

This graphical method may also be used for the improvement of flux plots
found by the analogies previously mentioned. The method of graphical
flux plotting may also be used to find the circulatory flow around a near-
circle in order to establish the conformal mapping into a true circle [5].

B,10. Hodograph of the Cascade Flow. Since the complex potential
x = x(z) and its derivative, the conjugate velocity tb(z) dx/dz (Eq.

,

L o2 C116

/ ",', "x "<Z- OC/ " o/

Fig. B,10a. Hodograph of flow through a straight-line profile cascade (schematic).
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7-2), are functions of the same complex variable z, the elimination of z
yields

X "0 X1(a) (10-1)

and the conformal map of the complex potential into the 0D plane. This
map is called the conjugate hodograph or, briefly, the hodograph of the

S
T

Q~ p ,

Fig. B,101. Hodograph of a cascade flow, which in general is not single-valued.

flow. A streamline of this hodograph is the geometric locus of the free
end points of the conjugate velocity vectors along this streamline.

Since the logarithm L(z) - In (dx/dz)/ltt. of the conjugate velocity
(Eq. 7-3) is a function of the complex variable z, the elimination of z yields

x = x,(L) (10-2)

and the conformal map of the complex potential into the L plane. This
map is called the logarithmic hodograph. Fig. B,1Oa shows the hodograph
xi(o) of the flow through a straight-line profile cascade at an angle of
attack (Ill.
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In general, the hodograph of the flow past a single profile or a cascade -4
is not "schlicht" or single-valued as Fig. B,10b shows [35]. Profiles exist,
however, for which, at least under certain angles of attack, the hodograph
becomes "8chlicht," as Fig. B,10c shows. The images of the origin and

Sp

L St S

T $2 (e ,K 1
T~~ S,2

(e)() K 
'

L S,

L K "_ KTT p S

-h-.l ..

(b) Pihn e e

() PrflLaigbln edn n triigegs2

T: 52 SS, _

T , .:Z .. S2

(a) Profile having blunpt leading and traiinedringes. adsanto on

(b)il haing wedged va uped t

(g) Profile having blunt leading and wesped trailing edges and stagnation point
in the point of reversed curvature.

goal of the flow are given by the inlet and exit velocities and contain the
corresponding vortex source and sink, thus corresponding to the condition
that the profiles must be clsed contours. A necesiry but not sufficient

condition that these contours do not intersect themselves, or are Jordanians,I ( 49>
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is that the stagnation points of the hodograph flow coincide with tb = 0,
as in the case of blunt or wedge-shaped leading or trailing edges, or that
they are situated where the velocity vector of extreme direction is
tangent to the edge of the hodograph, as in the case of cusped edges.

B,11. Mapping a General Cascade into a Cascade of Straight-
Line Profiles. In the case of a single arbitrary profile having a defined
trailing edge as a confluence point of the flow, there always exists an angle
of attack at which the lift is zero. Let the angle of attack 3 be measured

Fig. B,I Ia. The concept of a straight-line profile, equivalent to a given
profile with respect to chord length and direction.

from the direction of zero lift. One streamline of the zero lift flow meets
the profile in a branch point L0 , is divided there into upper (a.) and
lower (s,) sides of the profile, and joins again in a confluence point T, the
trailing edge (Fig. B,11a). When computing the potential difference
between these points along the upper side S. and the lower side s,

(DT - 4'L,)..i = fL vds.,

the potential differences are found to be equal on both sides. If they
were different by an amount r, this would be the circulation, which for
zero lift, as assumed, must be zero.

A straight-line profile of the length

- 4Lo
V.

and in the direction of V. would also experience no lift and has the same
potential difference between the leading and trailing edges. The outside
of the profile under consideration and the outside of the straight-line

( 50)
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!T

Fig. B, llb. The concept of a cascade of straight-line profiles, equivatlent to a cas-
cade of given profiles with respect to chord length and stagger at equal spacing.
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profile can be uniquely transformed conformally into one another.
The leading (Lo) and trailing (T) edges would correspond to each other,
and at infinity the fields would be congruent. At corresponding points
there would be equal values of the potential and the stream functions of
flow of any equal angle of attack.

T T T

e° 30,  6. =. 60.. , 900

L : 0'.7

.7 /

0 60' 0 60'

/ 60 00
o 45

45 L 45
L 30' 90'30 /

1.0 0.15

0.8 s/c' 1.0 5 
-15 0,8 s/c' 1.0 30

0.6 O30' 0.8

0.6 0.6

0.4 -45' 5'

0.4 0.4
15

Yo .. 601 YT -30°

0.2 S/C - 0.0 0.2 S/C _- 0.0 YT = 0 S/C 0.0
0.2

Fig. B,llc. Equivalent straight-line profile cascades of circular arc
profile cascades for camber angles of 0. - 30*, 600, and 900.

Under any equal angle of attack, therefore, both profiles would
experience equal circulation and equal lift. The straight-line profile
would consequently be equivalent to the given profile.

Also, for any cascade of profiles a cascade of equivalent straight-line
profiles can be found. Again, consider the zero lift flow through the
profile cascade. In this case the cascade does not deflect the flow, V, = V2
= V.. The equivalent straight-line profiles then have the direction V. and
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their length is
4,? - $4

c=

Since the amount of flow between two adjacent straight-line profiles
must be the same as between the profiles of the cascade under considera-
tion, the spacing and the cascade axis are the same. If one considers the
trailing edges to be coinciding, the comparison of the given profile cascade
and the equivalent straight-line profile cascade can be found as shown in
Fig. B,llb [5].

As previously done, the field of the given cascade may be uniquely
transformed conformally into the field of the straight-line profile cascade.

s/c = csingle ( s/c -0..x) Cascade

Cascadenoorma

15 0 10 1.2 for Y=

303 \ -.4-90,

Y 45* 60'

607 -50+3A

751: 9 ( Y 45°,s/c8 Dipoleaxis - 90°
CaCascade axis

Fig. B,lld. Equivalent straight-line profile cascadee of
cascades consisting of Joukowski profiles.

When changing the inflow conditions equally for both cascades, equal
cxit conditions are also obtained. Hence the deflection, circulation, and
lift are equal under any equal inlet condition for both cascades. With
respect to deflection, circulation, and lift, therefore, the designation of
equivalent cascades seems to be justified.

Fig. B,llc shows the straight-line profile cascades which are equiv-
alent to circular arc profile cascades for some finite camber angles depend-
ing on spacing and stagger. Fig. B,lld shows the same for a cascade
consisting of Joukowski profiles depending on stagger for moderate
spacing.

It can be recognized that for a given profile the orientation and
length of the equivalent straight-line profile depend on stagger and
spacing. Thus there is a cascade interference effect on the zero lift angle
of attack as well as on the slope of the lift coefficient, the latter in excess
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of the interference already encountered by the straight-line profiles
thermselves.

The knowledge of the straight-line profile cascade which is equivalent
to a cascade of given profiles is a great help since, except for the velocity
distribution, the performance of a given profile cascade may be derived
from the otraight-line profile cascade.

CHAPTER 3. METHODS OF TREATING
COMPRESSIBILITr, HIGH SOLIDITY, AND

VISCOUS EFFECTS IN
TWO-DIMENSIONAL CASCADES

B,12. Consideration of Compressibility for Subsonic Flows.

Small perturbation theory. With few exceptions the blades of multi-
stage compressors work in the subsonic range. For the high subsonic,
transonic, and supersonic ranges, the theory is still in its beginnings
[36,37,381 and is not treated here. (See Sec. G for treatment of supersonic
range.) In the lower subsonic range, small perturbation theory may be
applied.

Consider again the plane two-dimensional cascade flow. Upstream
and downstream the flow deviates but little from a parallel flow and, in
the case of smooth inflow and exit flow, only slight deviation from up-
stream or downstream parallel flows will occur near the leading or
trailing edges respectively. For the treatment of the inlet flow consider
the x axis to be parallel to the upstream velocity and, for the treatment
of the exit flow, parallel to the downstream velocity. Then, for the rela-
tive flow which deviates only slightly from a parallel flow one obtains,
considering compressibility,

( _ M') - = 0(12-I)

where M = Vs/a is the Mach number of the undisturbed upstream or
downstream parallel flow [39,401.

Consider the potential p to be composed of the potential of the undis-
turbed parallel flow po and of a small, additional flow v'.. vo auto-
matically fulfills Eq. 12-1. Hence for ,.

ax) + =0 (12-2)

Consider this x, y plane to be mapped into a , plane by

ej, X, 5 4.Vi -Ml y
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rA

M- 0 M-.O0.7

Fig. B,12a. Cascades at different Mach numbeorrreeponding to each other.

and consider a corresponding absolute flow o na n incompressible medium

in this plane, having the potential

c. = -/ -- M2 'A(12-4)

Also -to - jo. Then, any solution 4. of

a0. + - C (12-5)

corresponds to a solution p. of Eq. 12-2. 71e, velocities of these corre-

sponding flows are given by

lV V o V1-M= Vo V + (12-6)

V.V 0 = V o-- Vf (12-7)

V11 _M V, (12-8)
ay ayV- '

The directions of the flow in both planes to corresponding points are

therefore equal: V V'

tan = --= _'V (12-9)

By the transformation (Eq. 12-3 and Fig ,,8,12a) all the streamlines,

and therefore the profiles, are unchanged.
Compressibility corrections for angles. 04lfrily the distance between

the streamlines is changed and with it the ktaagger angle of the cascade
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and the spacing ratio [41]. (See Fig. 13,12b.) Thus

tan - tan -f (12-10a)

sin ' = sin s -y (12-l Ob)

= Vi-COS2 y,,M 2 = 0s *(11)

where the subscripts, and .denote incompressible and compressible
terms, respectively. For the cascade flow it is advisable, when comput-
ing the flow angle at the inlet and rxit, to treat the inlet and exit flows
separately and to determine (Eq. 7-17)

V1 . 2 _

wit = - A'' 1. 2) A' N ( 1. 2, (12-12)

(R1 .2), (R 1,2).

(tan 'Y,.2)i -(tan .2

( -= I - (COs 2 f2)M

where N(,y, 8/c) may be taken from Fig. B,6d.
Compressibility corrections for pressure distribution by the hodograpb

method. Let X~ be a parameter for whi h (42,431

Vi 2 dW - Itid In 0- (12-13)

and X =0 for Ml M* 1.

Al IV 'YI (12-14)

=* IV ~ ~ l (12-15)

are the Mach number and the velocity ratio referred to the critical veloc-
ity a* respectively, and y here is the ratio of specific heats. The X, , plane
may be called the quasi-logarithmic hodograph plane.
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Let

LOX) /f -MA (12-16)
p

be a parameter. Then the differential equations for the potential and
the stream function f' are

or with

N( (A) d In I

1(X) dX

a2N( X) + (- - 0 (12-17)

5 X2  Ox IX

)2P+ N + N(X) L- = 0 (12-18)W2 OX2  ax

In the case of the incompressible flow (a* = oo) in a layer of constant

thickness:
W

N---0, l--- 1, X - X, = In w

In the v, X plane, the picture of the subsonic flow of the compressible
medium in a layer of constant thickness is analogous to the flow of an
incompressible medium in a layer of the thickness I = 1(X). For a con-
stant X. let

AX =X - X

and be small. Then N(X) has only a very small influence on the solution
of the differential equation. Thus with the unchanged contour of the
quasi-logarithmic hodograph and with the unchanged singularities inside
of this contour, when X,. or the Mach number Ai., is changed, the dis-
tribution of the potential on this hodograph contour is changed only
slightly.

The assumption of small AX = X - X.. is equivalent to the assump-
tion of small excess velocities AW = W - W.* in the physical plane
x, y. Thus, with changed X. or Mach number M., the distribution of the
potential along the contour of the profile is only slightly changed.

The contour of a profile may be considered to be determined by

v= ;(X)
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By the flow along the profile contour in the physical plane x, y

'P = 'P(X) (12-19)

is given. By the flow picture in the quasi-logarithmic hodograph plane

'P = AM(V) (12-20)

is given along the contour of the quasi-logarithmic hodograph, which
corresponds to the profile contour.

From the assumption of small AX, it follows that p -- v(x) and
P = V() are only slightly dependent on X. or the Mach number M..
Considering the contour of the quasi-logarithmic hodograph and the
singularities contained in it to be given, the corresponding profile con-
tour will change only slightly with change of X. or the Mach number M.
and at corresponding points, having the same v, equal AX will prevail.

For a first approximation of the effects of compressibility in sub-
sonic flow, it is possible to neglect the changes in the profile contour,
when in the quasi-logarithmic hodograph plane the picture of the tontour
is considered to be unchanged [44].

The effect of the compressibility at the profile contour or in thu field
may be described by the influence on the pressure coefficient

p p. (12-21)

which for incompressible flow is

p -( / , = ,

Consider corresponding values to be

Then

C = (12-22)cjPi

may be determined.
For incompressible flow

Hence

, 1 = - e - - e
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Further,
OpWL 'yM
p. 2

Hence with

M,= MI. + AM2 (12-23)

AM 2 -

C 2 I_1 +-I (12-24)

and

+ (1 - M)i [1 - h(1 - M()1225effax =eu-. I -_ (12-25)
1 - (1 - M.)' 1 + h(1 - M'.)fI,,h
I + (1 - M ) ' 1  - h (1  - .2 i

where

h = ( -) (12-26)'y + I]

After some transformation, neglecting terms of the higher order of AX,
one finally obtains (Fig. B,12c)
Cf=C, = 1

cP, v M -- 1! I M y +I-- M._2
2 1 1 -4

(12-27)

In order to apply this result to pressure distributions on cascades, the
pressure distribution of the identical cascade in incompressible flow
must be known.

B,13. High Solidity Cascades.

Modification of the filament theory. Despite the fact that the cascade
theory covers the entire range between the single-profile theory and the
stream filament theory, there still seems to be a need for some simplified
treatment of cascades of high solidity, especially as they occur in turbines.

In filament theory a force field represents the blade action and the
streamlines obtained are all geometrically similar. The theory would
give approximately correct solutions only if the spacing were very small,
if the thickness of the profiles were very small as compared with this
spacing, and if the curvature radius of the profile camber line were every-
where very large compared to the spacing.

By adaptation of the filament theory to finite spacing, finite profile
thickness and finite curvature of the camber line can be considered. This
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improved filament theory may suffice practically up to spacing ratios of
81c = 1 and slightly higher; it is directly applicable, however, only for
operating conditions of smooth inflow.

This adaptation of the filament theory may be based on the following
assumptions [45]:

1. The deviation P = Al/R of the smooth inflow and the exit flow direc-
tions from the camber line tangents at the leading and trailing edges
where R is the curvature radius of the camber line near the leading
or the trailing edge, respectively, can be estimated (Eq. 7-32 or 12-12)
with or without consideration of compressibility.

2. Between the blades the velocity along any parallel to the cascade axis
is approximately parallel to the camber line at the corresponding point
and its inverse is linearily distributed along such parallels. This
assumption is not confined to incompressible flow and not primarily
confined to subsonic flow.

From

N1 , = pits (13-1)

the points are found where the camber-line tangents have the direction
of inlet and exit velocity by

Ali. -= v1 2Ri.2 = sN11. (13-2)

Let Aht,2 be the length of the head and tail part of the profile camber line.
The remainder 10 = I - (All + Al2) is, in the sense of stream filament
theory, the length of the representative part.

Computation of the velocity distribution for incompressible flows. Using
the designation of Fig. B,13a, the mean velocity T7 in the passages may
be found from

V. 8 V,. 8
cos 'Y 8 t cos oy s - As (13-3)

cos Y

where ,y is the directional angle of the camber line of the profile measured
from the normal to the cascade axis, s is the spacing, t is the profile
thickness as measured normal to the camber line, and V, is the axial
component of the flow far upstream or downstream of the cascade. If
V., is the circumferential component of the inlet velocity, and V0, of the
exit velocity, then

AVe = V, - Ve, (13-4)

is the change of the circumferential component. Hence the circulation
around every blade is

a' = r, = I - r, = sAVe = s(V,, - V,,) (13-5)
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vz
VlSuction side

Center of passage ,

Pressure side Q

d V = VS in y (13-6

a -
or b 1a subst itut y of tib to aEros 13-3,eprlllt hecss~ xs

Hence the change of the mean circumferential oomponent along the
passage is

, - V A tan -1 (13-8)
dl dl ta -s (13-8)

The contribution of any passage to the circulation around the turbine axis
is

r = (s - As)V= V,.s tan -, (13-9)

and the rate of change of this circulation along the camber line of the
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blade is

dr dtanv s dtan ( < L __(3-0
- . . 0dl < X < 1 (13-10)

This may be called the intensity of the vortex distribution along the
camber line of the profile.

Now, if the velocity is denoted on the pressure side by V, and on the
suction side by V., then the intensity of the vortex distribution is given by

dr = (V. - V,)dl (13-11)
Thus

V V,= dr V= d t (13-12)dl 1. dX

where i is the total length of the camber line, I is the length of the camber
line measured from the trailing edge, and

X 4 (13-13)

With the assumption that the velocities are to vary inversely as the
distance P + Q across the passage (Fig. B,4a),

v=f' v
p + Q (13-14)

where Q is the distance from the center of the passage measured in the
direction of the cascade axis, P is an effective mean curvature radius and
approximately of the order of the curvature radius of the profile camber
line, and 'V is the velocity in the middle of the passage. Then

V. = P -=-(I- 8 8 (13-15a)p -8 or 1. 2P

p+S -s or I + (13-15b)
_P +~ I s2

Hence
I 1\1 s-As 2P 2V.V,S- 2P or = (13-16a)V, V. 2P V.- V

I(+_ Lor 1V1 - V (13-16b)
T (-4) V.- VP
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The mean flow velocity

= 1 VdQ Jtp $ dQA

+7 2 in Q+
-As - -+Q -A

2

v. -v (1-17)

S 2P + D a)2- In2
2 P -- 8s s- As

2

or

V - V' -n (13-17)

Let

V, + V, = S 11, = + (13-18a)

V2 - V, = D J'- S (13-18b)

then

9 = ]n - - + 1

=- 1 In D- (13-19)
4 D /

For a given /D the corresponding SD may be found by the use of
Fig. B,13b which evaluates Eq. 4-19. The value of P may be found from

= = V. + , d (13-20)
D V - V, As

whence

P S-- ass (13-21)

Then
---. = I D- ! + 1(I 3-22a)

V.,_ =. I D !( -I 2I (13-22b)

can be found, after

D V. - V, V d tan -Y(3-3D =V. V = , ---A 0-3
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and

7 S- V,. s (13-24)Cos -f 8 - As

have been determined.
The velocity distribution found in this way, however, has to be

adapted to the finite spacing. The velocity found for the representative
part corresponds to the circulation, but head and tail parts also con-
tribute to the circulation. Therefore the circulation of the representative
part has to be reduced by their amount and the calculated velocities have

7.0

/ S
3.0 ___" _ 1/ k-

2.0

5.0
I V 2, D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D/S

Fig. B,13b. Relationship between difference D and sum S of velocities on
suction and pressure sides and the mean axial approach velocity.

to be adjusted correspondingly. This may be done graphically with some
judgment as shown in Fig. B,13c, where a first correction is made using
elongations ending at the inlet and exit velocities and where a second
correction is made to meet the stagnation point conditions and to adjust
the difference in the length of the profile contour on the suction and
pressure sides. In general a velocity distribution found in this way is
sufficient to determine the potential distribution on the suction and on
the pressure sides. This can be used for improvement of the analysis,
e.g. by flux plotting.

Extension to compressible flows. Under the assumption of velocity
varying inversely as the distance P + Q = r along a parallel to the
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cascade axis, the distribution of velocity and therefore of density is the
same as in compressible single vortex flow..

Consider, at a radius r*, the velocity of this vortex flow to be equal
to the sound velocity a*. Then

V r*
M* -K = -. (13-25)

a * r

and the distribution of density becomes

p, _-1 1 +- l -- (13-26)

The stream function is then found nondimensionally from

r/, fr -* d r k13-27)r, * " r-

with I = 0 for r/r* = 1. p/p* and P depend only slightly on y = c/c,
and are shown in Fig. B,13d fory = 1.33.

0 0.2 0.4 0.6 0.8 1.0

Fig. B,13c. Velocity distributions along the pressure and suction sides as found by
approximation and their adjustment for the tail and head parts of the profile.

Let fm be the axial velocity in a blade-free annulus at the location
under consideration and V. the axial velocity in this annulus if the
density equals the upstream density. Let p. be the mean density in the
annulus under consideration and pi the density upstream. Let

f = _2- (13-28)
PM

Then
P'. = fV. (13-29)

The factor f may be determined from the compressible vortex flow by
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.6,. ,t

qj*04I -4-

-0.41-
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

r/r* = I/M*
Fig. B,13d. Distribution of density p and stream function k,

of a vortex for -y - c,/c, - 1.33.

an iterative procedure as described later. By the use of this factor, the
equations of incompressible flow may easily be modified. It is found that
when the values designate the compressible case,

SV.s(13-30)
cos y(s - As) cos 'y(s - AS)

= sin Y f V. tan y = ff, (13-31)

P = (s - As) = fV.s tan y (13-32)

dP d tan-y s d tan y
dl f V. di f-z V. A (13-33)

df - ' s d tany" 1-4
= d= f(l' - 8 V) = -y (13-34)

Hence

f'-, - V,=)(V - D (13-35)

and

D (13-36)

Therefore for given f/O = V/D the corresponding S/D = SID may

again be found by the use of Fig. B,13b.
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Since Eq. 13-30 gives
f yv

it follows that
t =fD and =fS (13-37)

Hence
2b = f 2 = fV. (13-38a)

2 2 f=Sf D =fV, (13-38b)

and

I. 1 (I13-39a)

- - (13-39b)

may be found after

=f 2V. d tan -y (13-40)l dX

and
V= f v. s(13-41)

cos y s - As

have been determined.
It may be mentioned that, except for these changes, the other equations

found for the incomprcssible case also hold true for the compressible
case if the quantities are denoted by -.

The factor f can be determined in the following way: The mass
flowing through a passage is computed from upstream conditions

m = spV., = splV cos ,6
For any station

m = (s - As)p.V cos 0
Hence to fulfill the mass flow condition

s P Cos #1 (13-42)
V, s -p- p cos-y

Since
m = 4'. - = p*a*8*(4, - ) .,

'l,. - 'P * r* = 4I, (L - L (13-43)

*a* r* a a*

In the case of incompressible flow, let

V8(o) V,
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and
V,(o) = V,
V-7 VZ,

Then for a given V.,/a*, V.(o)/a* and Vco)/a* are also known. From
this (o) and T-pco) can be obtained; Then

'. - P - f(o) (1344)
'.(0) - T'P(o) Pm

is found. In the case of a given profile, this is an approximation because
of the change of mean density due to compressibility.

An improved value of '/VmI, is then found and from this improved
values of V., 1f, dt/dl are obtained, yielding V.(l)/a* and V,(l)/a* and
improved values, 0,(j) and 1k'(1). Then with

"'. -' 11p = P0-
*4'1) Pm

this procedure may be iterated. If the procedure converges, the result
is the desired one.

If there is no convergence, it may be concluded that the smooth
shock-free flow assumed for tie given conditions does not exist, and
shocks may be expected.

For a somewhat higher mass flow, therefore, choking may be expected.
There are also other methods [46,47 for the high solidity cascade,

which are based mainly on the change of velocity normal to a streamline
depending on the curvature radius R of the streamline

d In (V/V,.f) 1
dn W

Although this is an exact relation, the application is somewhat difficult
and, when short cuts are applied, it does not offer more accurate results
than the procedure described above, where for each section along the
cascade axis, Rp is taken as equal to the radius of the camber line.

B,14. Boundary Layers and Wakes.

Theoretical treatment of boundary layer. In the case of a single profile
having a relatively small lift, the boundary layer has so small an influence
on the pressure distribution that it is generally disregarded. In the case
of a cascade of higher solidity the boundary layer has a larger influence
because its displacement of the external flow cannot be neglected when com-
pared with the spacing. This is especially true in the range of larger lift coef-
ficients. Before true boundary layer investigations are attempted, the
pressure distribution should already be known. The following is an
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approximate method based on potential flow, which gives the pressure
distribution and a boundary layer model [48].

In boundary layer theory, it is considered that the boundary layer
extends only a small distance 6 from the profile contour, while outside
of this range the flow jo is supposed to be that of an ideal fluid (Fig.

(a)

t'p, const

(b)

(C)

............ .. . . .

Fig. B,14a. Imbedding of boundary layer in potential flow: (a) ideal potential flow
4a, (b) displacement flow 4,i, (c) displaced flow 4o - 41 + 4m, and (d) flow with
boundary layer (outside #o - #o + V,1; inside 4q 4j'(01 + 01P).

B,14a). Consider this flow #0 to originate by superposition of an ideal
flow j without a boundary layer and a flow 1t due to sources on the
profile contour, corresponding to the increase of displacement thickness
6* of the boundary layer, thus

00 4i + 411 (14-1)
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For a given momentum thickness 0 of the boundary layer, the displace-

ment thickness 5 is a minimum if the velocity in the range of the bound-
ary layer is constant and one half of the velocity outside the boundary
layer. In this case the displacement thickness 5* and the momentum
thickness 0 are in the ratio

H =- 2 (14-2)

This value of the boundary layer form factor H is representative of
values near the trailing edge of profiles.

Therefore the boundary layer and the wake may be substituted for
by a flow ji having one half the velocity of the ideal flow 4,j which has
no boundary layer. Thus

0= 1(41 - Old~ + 4", = 1(4 + 4%,) (14-3)

where et, = const is the stream function of 4' on the contour of the

profiles. The edge of this boundary layer is then determined by

00 = 'it (144)

In this way no new streamlines originate on the profile or in the boundary
layer. The replacement flow contains one half of its vorticity on the edge
(b) of the boundary layer and one 'ialf on the profile contour (p), whereas
in the real flow the vorticity is more evenly distributed across tb2 bound-
ary layer. Consider the total pressure across the boundary layer to be
constant, and the static pressure along the edge to be equal on the out-
side and inside. The resulting static pressure change across the boundary
layer compensates for the curvature of the streamlines in the boundary
layer.

Now consider the circulation of the flow 4', to be such that in the
confluence point the static pressure becomes equal on both sides of the
confluence streamline. The confluence point then does not necessarily
coincide exactly with the trailing edge. Generally the circulation will be
less than that following from the Kutta-Joukowski theorem.

In first order approximation, the displacement sources might be
considered to be distributed proportionately to the squares of the veloci-
ties of the flow 0, and in the total to correspond to the drag.

In this way, at least approximately, a relation between the drag
and lift deficiency might be established along with a lift maximum.
Furthermore the established pressure distribution might be an improved
starting point for an application of the boundary layer theory itself.

Separated flow when wake and downstream pressure are equal. Along
the profile contour generally, and depending on the pressure distribution
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and curvature, only a certain pressure recovery is possible. With an
increased angle of attack the flow separates from the profile and then
resembles a potential flow with free streamlines separating from the
profile. The pressure along these free streamlines must equal the down-
stream pressure so that such a flow can exist (Fig. B,14b).

The case of a cascade of straight-line profiles has been treated by
Betz and Peterson [49,50,511. Downstream velocity and direction are
found to depend on upstream velocity and direction and on stagger and
spacing of the cascade.

/

Fig. B,14h. Flow with separation and formation of free streamlines.

For the more difficult problem of more general profiles, Levi-Civita
and Schmieden have developed methods which up to now seem to have
found application only in single profiles.

Separated flow when wake pressure is smaller than pressure down.strearn.
Because of the frictional forces between the flow and the wake, at least
in the case of low solidity, the pressure in the wake is lower near the
profile than the pressure farther downstream [52].

In the case of symmetric profiles in symmetric flow, Riabouchinsky
has suggested treating the flow upstream and, to some extent, down-
stream by means of potential flow in the following way. (Fig. B.14c):
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Consider downstream a straight line normal to the free stream velocity
on which the upstream contour is reflected. Consider the streamlines to
separate on the upstream contour and to attach to the reflected contour
correspondingly.

(b)

- -

(C)

Fig. B,14c. Treatment of low pressure wake problems: (a) symmetric body under
symmetric conditions (Riabouchinski [521), (b) single airfoil profile treated by reflec-
tion (Schmieden 1421), and (c) single airfoil or cascade treated central symmetrically.

Determine this line of reflection so that the wake pressure or the drag
of the body equals the observed one. Schmieden proposed that this
method also be used for single airfoils. In order to apply this idea to
profiles of cascades, instead of a reflection on a straight line a central
symmetric arrangement might be used as shown in Fig. B,14c. It is not
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known to the author whether cascade flow has actually been treated
in this way.

Effect of wake dissipation on downstream flow. Along a parallel to the
line through the trailing edges, the downstream flow has neither constant
direction nor constant velocity, mainly as a result of the profile wake.
The conditions become more uniform as the distance downstream
increases.

The conditions on two such parallels may be distinguished by the
superscripts ' and ". Let p be the pressure, p the density, and V the

M
7./.Vol

-- .. Cascade trailing edges

V" = z V,

Fig. B,14d. Dissipation of the wakes behind raseade profiles.

velocity, having the components Ve in the tangential direction and V,
normal to it.

There are certain relations between the conditions at these parallels,
and in order to establish themi the equations of continuity and momentum
may be applied to a control surface bounded by two streamlines having
the spacing a of the cascade and two parallels to the cascade trailing edges.

No resulting force component acts in the tangential direction. Hence,
according to the law of momentum, when two-dimensional flow is
considered (Fig. B,14d),

fo p'V.VO'dy = p" V." Ve'dy (14-5)

The pressure does not contribute to the resulting tangential forces,
because in corresponding points at the two bounding streamlines the
pressure is the same.
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Also, in the axial direction, no resulting force component acts. There-
fore, corresponding to the law of momentum,

fj 'V'2dy + Jp'dy f" p"V'' 2dy + f* p"dy (14-6)

and, corresponding to the law of continuity,

p' V' dy = p " V'" dy (14-7)

Consider now the parallel (') to be just far enough from the cascade so
that the pressure may be considered to be constant, but the velocity
to be not yet equalized, though of constant direction. Consider the other
parallel (") to be so far downstream that not only the pressure but,
as a result of mixing, the velocity may also be considered to be uniform
and of constant direction. Consider the density to be unchanged. Then

fo' d J1F ,,1 (14-8)
fo, P' p"

V, 2 dY + R-s = P"Is - s (14-9)

fog V'dy = Vs (14-10)

In order to simplify these integrals the velocities (') along the parallel

near the cascade outside of the wake (s < y < s) are assumed to be
V, = const V' = const

9.00

and in the range of the wake (0 < y < s,,)

I"', = const V' = const

If the flow angles are everywhere equal,

' , (14-i1)

Then the following reIntion between stations ' and " are found:

"= V', I - (1 - Sd] (14-12)

1 - (3 - 2)

V'' SV (14-13)
0 I 1 - ) -

Sd8

P" - + 8d'  t"- ( - F 1-4
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0.6

-E- 0.5

0.4--- OF

0/

0.0.2 0.4

Sd/S

Fig. B,14e. Coefficients ej , id.,, and Ar' for e =

or

- S1 " (14-15)

z 1-1 -1 -s )
S (- ,S(14-16)

I - (1 -f2) 8d
8

8d (I 8d'\ (1 e) 2

j) P - 7112 8 8/ 1-7p p d 2 (-14(1 -

The pressure change between stations (') and (") is

ap = mpV1','  (14-18)
where (Fig. B,14e)

( 8 ( = 2 (14-19)
8 - 8l - - "
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The pressure p" farther downstream is always larger than the pressure p'

near the cascade. If there were no losses the pressure change

APid..1 - p(V'' - V") (14-20)
or

APiea , - I ,, + pV''2 uief (14-21)
where (Fig. B,14e)

-1
,Z"d..i - - ] 2 (14-22)

1- (1- Sd

8d
- I (14-23)

The total pressure loss is

Apt= APid,..- Ap (14-24)
or

AA.. = - + P'ed,, (14-25)

The substitution of

tan 0: =01 (14-26)
VI

yields
A S2= 4pV_ [ 2 0*id. - ) + sin 02la.-, (14-27)

cos2 B2 cs

Hence the pressure loss coefficient related to V. = ,

AC* = =-f cos' OS
4C11 = 2 cs 2( ,ld.1 - m. + sin'2 02NRd.1 (14-28)

The components Arz = V*a,.l - VO*,dea and A 'e - red,., of the pressure loss
coefficient AC* are represented in Fig. B,14e.

As long as more exact data are not known, e = 4 may be considered
to be a useful approximation for a station (') near the trailing edges of the
cascade profiles.

For e = I

COS' 02AC - Co 2 AP (14-29)

as shown in Fig. 13,14f. Further,
V:_ 1Vf

- (-
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and

0~ 8d

8

Hence

tan 03' -8 = Lt6 n 11" (14-30)
V~~ 1-1~e2)!d

8

The angle between the downstream flow direction and the axial direction
is always larger far downstream than it is near the cascade.

u0.2-

U

00 0.2 0.4

Sd/S

Fig. B,14f. Pressure loss coefficient AC*. Api0,,,./jp, for t
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SECTION C

THREE-DIMENSIONAL FLO W

IN TURBOMACHINES

FRANK E. MARBLE

CI. Introduction. The flow through a turbomachine blade row
may be separated conceptually into two parts: that which is due to the
gross influence of the blade row and that which is associated with the
details of blade shape. The general idea of decomposing the flow field
in this manner is a direct extension of classical propeller theory which, in
turn, was motivated by the success of the Lanchester-Prandtl wing
theory. In wing theory, one first computes the downwash at a givea point
of the wing induced by the entire wing and there analyzes the detailed
flow over the element in question. In turbomachine theory, one computes
the flow induced by all blades or blade rows at a given point and then
analyzes the detailed flow over the particular blade element in question.

It was Ruden [1] who first gave the intuitive description of turbo-
machine flow in the language of wing theory. In spite of the fact that he
did not pursue analytical development of this picture, Ruden did recog-
nize some essential relationships between linearized wing and turbo-
machine theory. One of these was the fact that, for a linearized theory, the
axial velocity distortion in the plane of a blade row is half that induced
by the blade row far downstream in much the same manner that the
downwash in the plane of a finite wing is half that in the Trefftz plane.

The computational difficulties of the full three-dimensional flow field
caused investigators to seek a simpler but less general description of the
interesting portion of the flow. This search led many to develop inde-
pendently the so-called radial equilibrium theory. In the radial equi-
librium theory one looks only at the flow far upstream and far downstream
of the blade row where radial accelerations have vanished and assumes a
completely axially symmetric flow where no trace of the individual
blades remains. In fact this description became so widespread by 1942,
at least among workers in Germany, Switzerland, United States, and
England, and the publication of these elementary results was so casual
or nonexistent, that it is impossible to cite accurately any priority in
the matter. The work of Traupel [2] is one of the earliest complete
accounts in which the radial equilibrium idea is employed, but it was
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used by others at an earlier date. One of particular interest, developed
and used extensively in the period of 1940, was due to von Kfrmin and
Rannie although it was not published in dev.ail until 1949 [3]. This par-
ticular treatment differs from others by being somewhat more than a
linear theory.

The drawback of the radial equilibrium theory is that it gives no
account of how the changes in velocity distribution take place across a
blade row. One has no idea whether the change in profile is complete
immediately behind or many blade lengths behind the blade row. To
rectify this difficulty, Meyer [4] studied the detailed potential flow
through a stat;onary row of a finite number of blades, using a technique
which was originally introduced by Ackeret for analysis of flow through
cascades. More recently Wu [5,6,7] developed a fairly general method of
treating turbomachine problems from a purely numerical viewpoint.
The difficulty experienced here is the general complexity of results, the
time consumed in calculation of a specific example and the relative
impossibility of extracting from these theories some essential features
that may be extended to apply to technological problems. On the other
hand the complete three-dimensional theories d(, offer the possibility of
investigating in detail very particular problems if they arise.

The three-dimensional problem simplifies greatly when it is assumed
that the flow is axially symmetric, -,s was done in the radial equilibrium
treatment. Physically this implies that the blade row must consis' of an
infinite number of infinitely thin blades. To achieve the most realistic
representation, these blades may be given their proper chordwise load
distribution but averaged circumferentially. A three-dimensional flow
theory based on these ideas was introduced by the present author [8]
and expanded to cover a variety of typical examples by Marble [91 and
Marble and Michelson [10]. The idea of this axially symmetric through-
flow is exactly that outlined in the introductory paragraph: to compute
an induced flow field in which the individual blades may be considered
operating. The assumption of axial symmetry indicates merely that the
induced flow in the plane of the blade row will be computed as if the trail-
ing vortex field were circumferentially uniform rather than separated into
discrete sheets.

The actual flow pattern over a turbomachine blade row differs from
the axially symmetric throughflow because of the finite peripheral spacing
of the blades and the detailed geometrical shape. The detailed blade
geometry is the main concern of cascade studies. In applying the results
of cascade theory and experiments to the three-dimensional flow problem
it is usual to approximate the effect of blade geometry, at a given radius,
by the local two-dimensional flow about the blade; the approach stream
direction and magnitude are given by the axially symmetric throughflow
theory. In this manner the blade angle of attack, the blade camber and

( 84 )



C,1 • INTRODUCTION

thickness, the critical Mach number, etc., may be selected or deduced
from two-dimensional cascade information, the process being repeated
at as many radii as required to define the blade. In this process it is tacitly
assumed that the flow about the blade at one radius does not influence
appreciably the flow about the blade at another radius.

The calculations involved in axially symmetric throughflow theory are
still sufficiently complex that application of the theory is restricted to
examples requiring special attention and is not very useful in routine
design. In fact the axially symmetric throughflow theory would be of
only modest help to the designer were it not for the fact that it leads to a
very simple and useful approximation. In his 1948 paper [8] the present
author introduced the so-called "exponential approximation" to the
throughfiow. In essence this is a method of describing the transition
from the known radial equilibrium patterns far upstream and down-
stream of the blade row; it employs the ideas of the axially symmetric
throughflow theory in obtaining this approximate transition. These ideas
were subsequently applied by the author [9,10] and later independently
by Railly [111 and by Horlock [12,13] to describe a wide variety of tech-
nological problems including mutual interference of neighboring blade
rows. This latter problem was also treated in a somewhat less general
manner, and by a completely different technique, by Wu and Wolfen-
stein [141. At present the radial equilibrium theory, the exponential
approximation, and its extensions given in the following work constitute
a method of sufficient accuracy and simplicity for utilization in the
majority of turbomachine problems.

There are effects, sometimes significant ones, that are in no way
accounted for in the combination of axially symmetric throughflow theory
and two-dimensional cascade theory. One of these is the fact that the
vorticity trailing from the actual blade row is not distributed but is
concentrated in the blade row wakes. It would be expected that this
modification to the induced velocity field is significant for wide blade
spacings and for large spanwise gradients of shed vorticity. This problem
has not, in fact, been investigated to a significant extent. A second
property of the actual flow, which is unaccounted for in the throughflow-
cascade theory, is the effect of boundary layers. These phenomena were
discussed physically by Weske [151. Of particular importance is the
interaction of the individual blades with thick boundary layers on the
hub and tip casings of the turbomachine. This problem of "secondary
flow" has been analyzed by Hawthorne [161 and several others as a
source of losses and as an influence upon blade angle setting. Finally there
is the rather singular problem of the transonic compressor, that is a blade
row in which the relative velocities are supersonic at the tip and subsonic
at the root. Here the question is whether cascade theory can be applied
locally to determine blade performance and required angles. It is not un-
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reasonable to expect that the flow about a blade element in the transonic
region would alter significantly the flow about blade elements at different
radii and hence negate the assumption that blade elements at'different
radii are independent. A detailed analysis by McCune [17] has recently
indicated that the interference is indeed so large that cascade theory is
not applicable in this instance.

Of the various flow processes comprising the complete three-dimen-
sional flow field, only the axially symmetric throughflow and the two-
dimensional cascade flow have been developed to the point of usefulness
in the design of turbomachine components. Consequently it is with the
axially symmetric throughflow that the present section is principally
concerned.

C,2. Formulation of Axially Symmetric Throughlow. The
throughflow is described by the axially symmetric motion of an ideal

rt Outer shroud

r 

Fig. C,2a. Schematic diagram of turbomachine.

gas passing through a prescribed force field representing the blade row
and moving tangentially to hub and tip boundaries, Fig. C,2a, of given
shape. There are, in general, two types of problem of interest to turbo-
machine designers differing according to the information prescribed
about the blade row, the direct and inverse problems. The inverse prob-
lem considers the flow field generated when a prescribed distribution of
enthalpy or angular momentum is added by the blade row. Here the aim
is to proportion the blades and to choose their angles appropriately to
meet conditions at a certain design point. The direct problem, on the other
hand, considers the flow field induced by blades of given geometric
configuration. Here it is desired to determine the blade row performance
at operating conditions other than those for which it was designed.

The aerothermodynamic equations. It is most convenient to describe
the throughflow in a cylindrical coordinate system, Fig. C,2b, where
u, v, and w are the velocity components in the r, 0, and z directions.
Denoting the axially symmetric force components corresponding to the
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blade row by F,, Ft, and F., the equations of motion are

Ot Ou v 1 Op
U-T + -L - - = -- W + F, (2-1,

u(rv) + w -(rv) = F (2-2)
Ow Ow 1 Op

upw+zw = + F, (2-3)

In writing the equations of motion, account has been taken of the
general axial symmetry of the flow, and consequently all peripheral

U,

k,,
r r

- z

Fig. C,2b. Notation for axes, velocity components, and vorticity components.

derivatives vanish. The continuity equation may be written similarly as

T- (r) + 1 (PW) = 0 (2-4)

It will often be convenient to describe the flow field in terms of the radial,
tangential, and axial vorticity components defined respectively as

Ov (2-5)

Ou Ow (2-6)

1 O(rv) (2-7)
r Or

The equations of motion, Eq. 2-1, 2-2, and 2-s, may be rewritten in terms
of vorticity components as

W-v = F,- O r +Or (2-8)

u"- w = F6 (2-9)

vt - Ul) = P, - CI +  (2-10)

where q is the magnitude of the velocity, q' = u2 + v 2 + w2.
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For some analysis it will be convenient to write the equations of
motion in terms of the enthalpy and entropy gradients rather than the
pressure gradient. Denote the general pressure variation 6p as

18p= 6h- Ts (2-11)
p

where s and h are respectively the entropy and thermodynamic enthalpy
of the gas. Then defining the stagnation enthalpy

hO = + 2 (2-12)2

equations of motion in the radial and axial direction, Eq. 2-8 and 2-10,
may be rewritten

F h+ T as (2-13)

Oh0  88
vt - un F. - ah' + T a (2-14)

It is worth noting also, at this point, that the combined first and second
laws of thermodynamics, Eq. 2-11, may be written to give the entropy
variation of the gas along a stream surface in the form

T + s) =u + w -+ yp - a)+ z w-\) (2-15)

Although the heat transfer to the gas is usually negligible, the losses in the
blades make the flow process a nonisentropic one. Consequently it is
necessary to calculate the entropy variation explicitly.

Conditions at the blades. In the absence of any shear stresses or losses
the local blade force is normal to the local blade surface. When lesses
such as surface shear stresses are present, however, the complete force
system must also have a component tangential to the local blade surface.
It is appropriate then to express the blade forces in two parts: one set,
F)u, FV), F), the resultant of which is normal to the blade surface; and
a second set,,F(, F(2) F( ') which is tangential to the blade surface.

The first set of blade forces, normal to the blade surface, bears a simple
relation to the velocity vector. For since .the relative velocity u, v - wr, w
is tangential to the blade surface locally, it is likewise normal to the force
F()' , FV , that is, the scaler product vanishes.

uF( 1 + (v - wr)F(1 ) + wF ' 0 (2-16)

The second set of blade forces, representing the blade drag and lead-
ing to losses, will be considered of a specialized form. It will be assumed
that this component is not. only tangential to the blade surface but parallel
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with the gas velocity vector (u, v - wr, w) relative to the blade. This
restriction is clearly appropriate when the force F",, F?', F1) arises only
from simple skin friction. It is an oversimplification of fact, however,
when there exists a cross flow within the boundary layer, i.e. when the
local direction of boundary layer flow deviates from the direction of flow
just outside the boundary layer. These values of transverse skin friction
are generally of minor importance and there is a question, moreover,
whether the effect of such flow may properly be evaluated within the
axially symmetric throughflow theory. Under these restrictions this
second force system may be written as

I (u, v - r, w)
(F) , F 2)) = - CD[U' + (V - W)2 + W21 V'U + (V - I r)2 + W,

(2-17)

where CD is an appropriate local drag coefficient which can be considered
a prescribed function CD(r, Z) within the blade row.

There exists an additional restriction 118 upon the blade force system
Fl), FV), F,'1 arising from the fact that it is generated by a continuous,
generally smooth, blade surface. Suppose the blade surface is defined by a
relation,

#(r, 0, z) = const (2-18)
so normalized that

(O)r 
+  

o4/ 
+ \  

=2

Then the unit vector normal to the blade surface has components

0o 00 a1

and if the blade loading is given by a function A(r, z), the blade force
vector (F1',, F '), F,1)) is given by

(PI O" , FV1)) - A(r, z) LO (2-19)
\Or rO z/

Taking the curl operation of Eq. 2-19 gives curl F = curl (A grad #). If
the right side of this relation be expanded and note is taken of the fact that
curl grad 0 =- 0, then

curl FO') = grad A X grad 0 (2-20)

Furthermore it is clear from Eq. 2-19 that the force vector FWl is parallel
to grad 9 with the consequence that Fl) • (grad A X grad f) = 0. Thus
the left-hand side of Eq. 2-20 yields the condition that the force must
satisfy the relation

F11 curl F') = 0 (2-21)
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in order that the flow follow a blade surface that is constructable and
continuous.

The condition given by Eq. 2-21 may be written down explicitly for
the present special case of axial symmetry, and gives

1 10 Fl

-F;l aFV. + FV - -- + R - -(rF(') = 0 (2-22)Oz Ch(1Z Or ) r r

This may be written in the more compact form

a (F ), = ' f (2-23)
O rF '~) Or krFV'))2-3

The restriction imposed by Eq. 2-23 is of mathematical significance in that
it reduces somewhat the freedom of choice in selecting the force field to
represent a blade row. From a strictly utilitarian point of view, however,
there is some doubt as to how seriously Eq. 2-23 should be taken. In the
first place the axially symmetric throughflow itself is an approximation
which makes the concept of detailed blade shape rather dubious. Sec-
ondly, in the preponderant number of cases concerned in jet propulsion
application, the radial force component F, is negligible. It is, therefore,
very defensible to assume F<,) = 0 and neglect the condition given by
Eq. 2-23 or its equivalent. In the present work Eq. 2-23 will be retained
in the general theoretical consideration but will be dropped in particular
appropriate examples.

Variations in stagnation enthalpy and entropy. The so-called Euler
turbine equation is one of the few, very general results of turbomachine
theory. In its usual form it relates the stagnation enthalpy rise through
a blade row to the change in angular momentum of the fluid imparted
by a moving blade row. Since it will be advantageous to follow fluid
mass along the streamlines it is appropriate to denote by 1 the length
measured, from an arbitrary origin, along the axially symmetric stream
surface in a fixed meridional plane. Then the derivative along the stream
surface, moving with the fluid, is

7 a + (2-24)
1 - O r + z

where Vi = Vul + wl is the meridional velocity along the stream sur-
face. For example, dynamic equilibrium in the tangential direction,
Eq. 2-2, becomes

V, "0- ) = rF, (2-25)
The product rv is referred to as the angular momentum (per unit mass).

Eq. 2-25 states physically that, along a stream surface, the angular
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momentum changes at a rate proportional to the moment of the applied
tangential force.

The Euler turbine equation must follow from the first law of thermo-
dynamics, given by Eq. 2-15. The second term on the right-hand side,
representing the work associated with volume changes, may be rewritten
as

p (ua + w a (u +w - r 1 P (2-26)

The pressure derivatives (1/p)ap/ar and (l/p)OpiOz may be eliminated
through use of the first and third equations of motiou, Eq. 2-1 and 2-3.
Substituting from these into Eq. 2-26 gives, after some simplification,

+ a + +W

- u--- uF,-wF. (2-27)
r

From the tangential equation of motion, Eq. 2-2, it follows that

W~e =u !+ Ua+Wa)(2

which provides, upon substitution into Eq. 2-27,

p (z+ F a) u a + w -) (2?+ !) - (uF, + rF, + wF,)

(2-28)

Now using Eq. 2-28 and noting that the quantity e + (p/p) + (q2/2) is
just the stagnation enthalpy of the gas, the combined first and second
laws of thermodynamics, Eq. 2-15, may be written in the form,

(42.+w a)hO - wrF. = T u -- + W

+ [uF, + (v - wr)Fo + wF,] (2-29)

It will be recalled now that the force field associated with the blades has
been divided into two parts: that part F , ),  F 1)  which acts normal to
the relative motion and hence satisfies the condition that

uF1'1 + (r - wr)F l) + wF(" 0 (2-30)

and that part F(1), FV), F,) which is parallel to the relative motion, accord-
ing to Eq. 2-17, and is associated with the losses. In view of Eq. 2-30,
therefore, Eq. 2-29 may be written

VOh - wrFe = St s + I F( 2) + (z, - wr)F ' + wF,2,)] (2-31)
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In the absence of losses the right-hand side of the equation vanishes
identically, for then the shear force system F"', FV1, P _21 and the entropy
variation are both zero. The result of setting the left-hand side to zero
gives

ahQ
V- wrFe (2-32)

and may be recognized as a gross application of the first law of thermo-
dynamics. The term Vjah 0/0l represents the rate at which stagnation
enthalpy of the fluid is rising and the term wrF# represents the -ate at
which torque applied to a particular radial element of the blade row is
doing work on the system. Since the heat transfer is usually a negligible
quantity, it is clear that this work must go into increasing the stagnation
enthalpy of the gas. Furthermore it is evident that Eq. 2-32, being an
over-all thermodynamic relation, holds regardless of whether or not
losses are present. Then, of course, Fe is the total tangential force, the
sum of the normal FV) and dissipative FV) tangential forces. As a result
of this observation it follows that the entropy variation along stream
sarfaces may be calculated by setting the right-hand side of Eq. 2-31 to
zero. Thus

TV -[uF'1) + (v - wr)FV') + wF(2)]  (2-33)

It is clear now that only the second set of forces tends to change the
entropy. Substituting from Eq. 2-17 the entropy variation may be
expressed in terms of the velocity components

Os
TV,1  = JCD[U2 + (v - Wr)' + Wt]4  (2-34)

so that the rate of entropy increase along the stream surface is propor-
tional to the local values of CD within the blade row and vanishes outside
of the blade rows. In principle, at least, this relation allows computation
of the entropy distribution that enters into determination of the tan-
gential vorticity through Eq. 2-43.

Returning now to the variation of stagnation enthalpy, the moment of
blade force may be eliminated from Eq. 2-32 by using Eq. 2-25, giving
the change of angular momentum along a stream surface. Thus

V1 O V 1 (rv) (2-35)

which is essentially the Euler turbine equation in differential form. Clearly
this may be integrated along any stream surface where the blade row in
question has a fixed angular velocity w. Across a blade row with angular
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velocity w, the change Mh in stagnation enthalpy is given by

Ah° - coA(rv) (2-36)

where A(ru) is the change in angular momentum of the fluid and all
changes are measured along a fixed stream surface. When w and A(rv)
are of the same sign, as in a compressor, the stagnation enthalpy rises;
when o and A(rv) are of opposite sign, as in a turbine, the stagnation
enthalpy of the gas is reduced. Across a stator, a stationary blade row, the
stagnation enthalpy remains constant since c = 0. Finally in a space
that is free of blades, the tangential force F. vanishes and consequently,
according to Eq. 2-25, the angular momentum of the gas remains con-
stant along stream surfaces. Obviously the stagnation enthalpy remains
constant under this circumstancc.

The tangential vorticity. A glance at the expressions for vorticity
components [81, given by Eq. 2-5, 2-6, and 2-7 shows that, while the radial
and axial vorticity components are given in terms of only the tangential
velocity, the tangential vorticity components include both the radial and
axial velocities. In other words the meridional velocities, the radial and
axial components which make up the throughflow, may be related to the
tangential vorticity. It is appropriate, then, to investigate the propagation N
tangential vorticity. In carrying out this analysis it will prove necessary
to calculate the variation of quantities normal to the stream surfaces, and
hence a length must be introduced to measure distance normal to the
stream surface. This may be accomplished using the stream function 4
itself, which is defined by the properties that

PU = P0 (2-37)

pw = 1- P0V' (2-38)
r cOr

where po is a constant reference density. It follows that, if 8' is the small
difference in stream function between two nearby stream surfaces, then
the normal distance between them is - (I/rVI)(po/p) 4. The differential
operator normal to a stream surface is just

wa u O
Vz r V, dz

so that, in a more compact form,

P0 rV? 0 w 7 - f (2-39)

Now it is a simple matter to calculate the variation of stagnation
enthalpy normal to the stream surface, by taking dh0 /dr from Eq. 2-12
and ah0/Oz from Eq. 2-13. Substituting these values into the right-hand
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side of Eq. 2-39 gives

-p r v , ( iF,.+ T 0r- w77+ Vt) -1l (F. + T q-v+u,)
P0 84' ar/

- -L rWT (2-40)

Eq. 2-40 may be interpreted as a relation for the tangential vorticity q.
The terms involving radial and axial vorticity components may, as was
suggested previously, be expressed in terms of the tangential velocity.

Referring again to the vorticity components, Eq. 2-5 and 2-7, it follows
that

w vr (rv) u aO(rv)]

vIv, 7rLVz 8r V i -I- (241)

Furthermore it appears that the force term (w/V)F, - (u/V 1)F, is
simply the force component normal to the stream surfaces and conse-
quently it is convenient to defiu'

F, -- F,. - 'F, (242)

Using the results of Eq. 2-41 and 2-42, the tangential vorticity may be
written, from Eq. 2-40, as

P O v T(rv) ( + F (243)= p0 -4, - r -a-- 4,

A restricted form of this was originally obtained by Bragg and Hawthorne

[191 and the complete expression was given by Marble and Michelson [101.

Although this is not, in its present form, a very useful relation for deter-
mining the tangential vorticity since differentiation occurs with respect
to the unknown stream function, it is, however, a very convenient guide
for physical reasoning. The tangential vorticity associated with the force
component F* is essentially a "bound vorticity" and is of the same origin
as the bound vorticity connected with the lift of a wing. If the angular
momentum were invariant with 4' and the tangential vorticity depended
upon hl and s only, then the flow outside of the blade row becomes rela-
tively simple. Under these circumstances hO and s are constant along
stream surfaces and hence t)/pr is constant along a stream surface. It is
easily shown that this result follows from the fact that the circulation
about a physical annular vortex tube remains constant as it moves outside
of a force field.
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On the other hand, if the enthalpy and entropy were uniform, and
again the space outside a blade row is considered, the tangential vorticity
arises only from the angular momentum. But since the angular momen-
tum is constant along stream surfaces, then clearly the quantity tir/p is
constant along a stream surface. Physically this fact is related to the
constancy of circulation along a helical stream tube which may have a
greater or smaller component in the tangential direction depending upon
how the stream tube is deformed by the flow. Within a blade row, where
force components act on the fluid, the tangential vorticity responds in a
manner that, while fairly complex, may be determined from Eq. 2-40
when the appropriate values of hO, rv, and 8 are known.

The mathematical problem. Sufficient development of the gas dynamic
details has been undertaken so that the mathematical problem of through-
flow calculation can be formulated in a more or less satisfactory manner.
Since the velocity components u and w are of central interest, the tan-
gential vorticity (Eq. 243) will be the focus of attention. Since the
stream function 4' has already been introduced it is natural to express
the tangential vorticity in terms of the stream function (see Gravalos
[20] and Marble [101). From Eq. 2-6 and the definition of the stream func-
tion, it follows that

1- = Or -- 8\- + a (p O ) (2-44)

To eliminate the density derivatives that naturally arise in expanding
Eq. 2-44 it is necessary to introduce the equations of motion in the radial
and axial direction (Eq. 2-1 and 2-3). Again utilizing the stream function
Eq. 2-1 becomes

a +',W (E,\ 1~ # V2 =api a po\ api as
- 3z* prz i P = _ __Fr Pr/ Tr Op Ir pr (p ps ~,r

(2-45)

Here, of course, Op/ap is is just a2 the square of the sonic velocity and for

a perfect gas

P ( - l)T (2-46)

Expanding Eq. 2-45 and collecting derivatives of Po/P gives

aa u )~ ( L) _ U ( p ( E 2 [ Z ar ' '(a l -  u Z) -j - UW az\p/ r T"

+ z G r -- LF,+v-- -)T ] (2-47)( rr r j
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Treating Eq. 2-3 in an entirely similar manner yields

0U -( as -W)8to
--w + [F (, - 1) T 8]

(2-48)

Eq. 2-47 and 2-48 may be solved simultaneously for (3/Or)(poip) and
(8/0z)(po/p) and the results employed when the right-hand side of Eq.
2-44 is expanded, with the result that
P--7= 1--!a1\-W+± 1

Pr aa 1r Or r yz - z rar

+ -0 a 4\ v2 1O pV 2F + -V ( y - 1)T a

(2-49)

Finally inserting this expression for the tangential vorticity into Eq. 2-40,
the partial differential equation for the stream function is obtained

( - a) O(1,) al [ O(Io, + a (I r)J

a2 ) °ai G( "a'r r"
(p' Oh_ I+(,I V,]T. -r I F

0P) l,r1101a2 0V a2) V,

(2-50)

The stagnation enthalpy h0, the angular momentum rv, and the entropy s
are described by Eq. 2-32, 2-25, and 2-34, respectively. The local speed of
sound a, which appears in Eq. 2-50, is related to the stagnation enthalpy
and the velocity components through the enthalpy integral

1- a -= h - 4(U2 + vI w ) (2-51)

The density p, which is involved in the principle equation (Eq. 2-50) and
elsewhere, follows simply from the combined first and second laws of
thermodynamics

17 - lOp l"Oa os
4 p l a co (2-52)

The physical description of the flow field is thus completed.
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So far as the stagnation enthalpy h0 , the angular momentum rv, and
the entropy 8 are concerned, the stream surfaces themselves constitute
parabolic characteristics. The differential operator for the stream func-
tion, given by Eq. 2-50, requires a little more analysis. Expanding the
left-hand side of Eq. 2-50 gives the differential operator as

82\04 2uv +~ o 2~- u 8
a2) a ja raz a a2 r5

a2 r oaz a' (2-53)

The slopes of the characteristics (see Monroe 121]) may be written down
directly from the coefficients of the second order terms as

2u 2uw U2)
dz = - -  

a 2 _-' __I - 4( -0
dr (1 !

M 2 sin cos + %/VM2 - 1 (2.54)
1 - M, sin 2 (P

where the meridional Mach number Va/a has been denoted M and
p is the angle between the stream surface and the axis of symmetry,
tan V = u/w. The angles between the characteristic surfaces and the
stream surfaces are also easily found. For if a is the angle between char-
acteristic surfaces and the symmetry axis, then tan a = dr/dz and

tan ju = tan (a - ) (2-55)

where A is now the angle between characteristic surfaces and stream
surfaces. Using dr/dz = tan a from Eq. 2-54, a little calculation yields

tan ;& = - 1 (2-56)
V/M2 - 1

It is of main interest that the differential equation (Eq. 2-50) changes
from elliptic to hyperbolic type accordingly as the meridional Mach
number is less than or greater than unity. The nature of the flow then
depends upon the meridional velocity component, the total velocity
N/u' + vs + w2 entering only through the manner in which it affects the
velocity of sound according to Eq. 2-51. Whether or not .Vu + v+ 0+ w/a
exceeds unity has no bearing on the present problem. The characteristics,
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defined by Eq. 2-56, have all the properties familiar from usual axially
symmetric flow problems where there is no tangential motion, so long as
the Mach number M is interpreted in the appropriate manner. In the
present work it will be assumed that the meridional Mach number is less
than unity throughout the turbomachine.

It is now possible to make some statements, although not very con-
clusive ones, regarding the formulation of the inverse problem, that is
where something other than the blade geometry is prescribed. They
are not really conclusive because the nonlinear nature of Eq. 2-50 pre-
cludes the guarantee of a well-behaved solution under boundary con-
ditions of any generality. The results are of interest, however, because
they do delineate the maximum amount of information that must be
prescribed.

If one prescribes

1. h0 (r, z) or rv(r, z) or Fe(r, z) throughout the turbomachine (cf.
Eq. 2-25, 2-32, and 2-35).

2. The blade shape or loading at the leading edge (cf. Eq. 2-23).
3. That the flow be tangential to inner and outer walls of given shap:.
4. The values of the stream function, enthalpy, entropy, and angular

momentum far upstream of any blade row.
5. That the stream function, enthalpy, entropy, and angular momen-

tum be regular far downstream.

Then the details of the throughflow can be determined through solution
of Eq. 2-50, together with those of Eq. 2-25, 2-32, 2-35, 2-43, 2-51, and
2-52 that are required for the quantity given under (1) above.

A word of further explanation may be added concerning item (2)
above. Referring to Eq. 2-23 relating the three blade forces, this equation
has a direct analogue when the "intrinsic" coordinates are employed
and the components denoted F 1, F1n, Fill,

T0 2F (f\ (2-57)

But from the kinematical condition that the blade forces be normal to the
relative velocity,

VjFl) + (v - wr)FV') = 0 (2-58)

and hence

a I ) -V) v \ (V ) (2-59)

Now considering F(P and ri as prescribed or calculable quantities accord-
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ing to statement (1) above, Eq. 2-59 may be integrated along a stream
surface to give

rF - - r-F $ (c ) r Vo L ) dl (2-60)

where lo represents the leading edge of the blade on the stream surface in
question. Therefore if F 'D is prescribed at the blade leading edge it may,
in principle, be determined through Eq. 2-60 at other points of the blade.
It is clear, furthermore, that the ratio of force F ')/FV) represents the
inclination of the leading edge with respect to a meridional plane and
hence the prescription of leading edge shape will suffice also.

For the direct problem, that is the physical situation where the blade
shape is prescribed, it may be considered that the components n,, no, no
of the unit normal to the blade surface are known. In the intrinsic coordi-
nate system this vector has components np, no, ni. Clearly this vector is
normal to the velocity vector relative to the blades, so that

(v - wr)no + Vtnt = 0 (2-61)

or the angular momentum must be

ri = r - - (2-62)

Furthermore, since the force Fl", F ", ,F1, is parallel with the unit vector
np, no, nt, consequently

F )= F 1) n_ (2-63)no

Utilizing now the definition of Flo) from Eq. 2-17 and the conservation of
angular momentum from Eq. 2-25, and noting that F ) = 0 since the
velocity component normal to the stream surfaces vanishes, it follows
that r ¢V1 Orv 1 1

n-p arv + 1 CD(t, - wr) V/(v - wr)2 + V2 (2-64)

Consequently knowledge of fi/no and nh/no permits calculation of the
angular momentum rv and hence the force ccmponent Fp normal to the
stream surfaces. The direct problem is reduced, therefore, to one formally
identical with the inverse problem, the solution of which has been
discussed.

C,3. Linearized Treatment of Throughflow. The general through-
flow problem as outlined in the previous articles is a strongly nonlinear
one and, as a consequence, this exact formulation is seldom treated by
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other than numerical methods. The nonlinearity results from the facts
that (1) the conservation relations for angular momentum, stagnation
enthalpy, and entropy hold along stream surfaces and these surfaces
are not known in advance of solution; (2) the coefficients in the differ-
ential equation (Eq. 2-50) depend upon the velocity components of the
solution because the gas is compressible; and (3) in the direct problem
the force components themselves, the angular momentum, etc., are given
in terms of the final solution through their relation to the given blade
surface shape. Fortunately it is usually the case, in axial turbomachine
problems, that a useful linearization of the problem may be effected.
The possibility of this arises because (1) the blades are relatively lightly
loaded in the sense that the change in angular momentum across a blade
row is small in comparison with the mean value of the angular momen-
tum; (2) the geometrical boundaries are sufficiently simple that a reason-
ably accurate assumption of stream surface shape may be made in
advance of detailed solution; and (3) the perturbations to mean velocity,
density, and velocity of sound are sufficiently small that the compressibil-
ity terms may be calculated from conditions in the undisturbed flow.

The linearizing a8umptions. The linearized problem of turbomachine
throughflow may be formulated in a satisfactorily unified manner by
assuming that the blades are lightly loaded. The linearization given by
Marble [8,10 was arrived at by an iteration procedure and is inconsistent
in the order of some terms neglected. A consistent linearization was first
given by Rannie 122] for the region outside of the blade rows. In analytic
form it is assumed that the force field associated with the blade row is of
the form

F, = ef,

F, = (3-1)

F,=E

where e << I and f,, fe, fs are functions of order unity in the independent
variables. It will prove convenient to employ the radial velocity com-
ponent as the dependent variable in place of the stream function N!,.

The basic flow field will be assumed to be that which exists in the
absence of a blade row, satisfies the boundary conditions on inner and
outer surfaces, and takes on the appropriate initial values far upstream.
If the inner and outer surfaces were concentric cylinders, the stream
surfaces of this undisturbed flow vould also be concentric cylinders. For
usual axial turbomachine configurations it is adequate to assume that the
inner and outer surfaces deviate from circular cylinders only in the order
e, so that indeed the undisturbed flow will take place along concentric
cylindrical surfaces. Therefore the radial velocity component u is at most
of order e.
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It is assumed now that all dependent variables may be expanded in
powers of the small parameter e which is indicative of the magnitude of
the applied forces (Eq. 3-1). Denote the order of the terms by a super-
script, the superscript "0" being the basic undisturbed flow, "1" the first
order perturbation, etc.

u-=eu€t) +  + e s° + s(l) + •••

v = v (O)  + eV ) - + a t--  a2(°)  + Ea20 1)  + (3 -
~ (3-2)

Wt = W,0 ) + e'w
0 ) + • • • p p(O) + CpMl +.

ho = h( ) "- eh( ) "+ T = TO) -+ T) -+

For consistency of the force field it is necessary to assume also that

C'D ED (3-3)

where 6D is a function of r and z of magnitude unity.
First order perturbation. Although it is possible to obtain the desired

perturbation relations for radial velocity by differentiation of Eq. 2-50
and substitution from expansions in powers of e (Eq. 3-2), it is generally
simpler to accomplish this directly from the equations of motion them-
selves. It is convenient first, however, to derive the linearized relations
for the stagnation enthalpy, the entropy, angular momentum, etc.

Recalling that F, F ) +- F± ) it follows that to the first order in e

Fe = f ')
- eV(V() - wr) "/'(V() - aWr) 2 + w(°)" (3-4)

where the expansion for FV) is obtained from Eq. 2-17 using the expres-
sion for CD given in Eq. 3-3. Then the second equation of motion, Eq. 2-2,
which expresses the conservation of angular momentum of the fluid,
may be written

a
(eu'') + .•") k (°) + evO) +

+ (u'(Q) + 001 + . rv v'57z Jr(00o + *0"> + ••")

- rtEf'1) - I ED(V(0 ) - wr) X/(V <°) - wr) 2 +w ( ) l + • (3-5)

where it is assumed that f ")(r, z) and D(r, z) are prescribed functions.
The zeroeth order relation (terms not containing the small parameter e)
gives simply

a (r(o)) 0 (3-6)

so that the initial undisturbed value of angular momentum rv(o) does not

change along the axis of the turbomachine, but is transported unchanged
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along circular cylinders. The first order relation (terms proportional to
the small parameter e) may be written, taking account of Eq. 3-6, as

U8 + W(O)ao = -fv, - *ED (V0(' - Wr) '000) - W2r) + w(0 )2

(3-7)

From this relation, the first order perturbation in angular momentum
is seen to consist of two parts. The first part arises from the moment of
tangential forces applied to the fluid, the right-hand side of Eq. 3-7, and
the second part u0O)rv(0)/Or is due to the radial transport of the initial
angular momentum r 0°).

Treating Eq. 2-32 for the stagnation enthalpy in exactly the same
manner gives similar results for the zeroeth and first order relations:

w a) h(O)

a--9 = 0 (3-8)
and

Oh( °  Oh')
UM ah--) + w(0) AM = wr.h" - ,rtD(vOG) - wr) v-000 - wr)2 + W(0)2

(3-9)

Similarly the entropy variations follow from Eq. 2-43 as

T( C1O 8 (0 )

O ) = 0 (3-10)

and
uM (0) + (0) a80 ) =

-+ w(°)  - 2t 0  [(V(o) - owr) 2 + w(0)2]1 (3-11)

It is to be noticed in the preceding equations (Eq. 3-6, 3-7, 3-8, 3-9, 3-10,
and 3-11) that, to calculate the first order perturbations of angular
momentum, stagnation enthalpy, and entropy, only the first order
perturbation in radial velocity, u0)7 , is required. Therefore it is neces-
sary to develop a differential equation which may be solved for the radial
velocity perturbation.

If the equation of motion in the radial direction be perturbed in
accordance with Eq. 3-2. the resulting zeroeth order relation is

V 0
) O (3-12)

while the first order relation is just

()8u 2v(0 )v(I) v(0) 2 p(1) Op(+
w .. . . . . + r p(O) + (3-13)
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The equation of motion in the axial direction, perturbed in the same
manner, yields only a first order part

awO) w )  Ip(I)u- w+ (0)  -f. (3-14)Or Oz p(O) Cz

The pressure perturbation p() may be eliminated between Eq. 3-13 and
3-14 through cross-differentiation, to give

W() uW ) ' w(o w Ou ') O2w() U Ow ) aw(")

(° z - ar.- / - Or r- Or2 o-¥ -a

I ap(o,/ aw~o, w(
p, UMO) +u" -

" W(°)
w() Oar Oz )

2v0 ) av('v  v (0 2 1 o(l) I ap(° ) Of, _f. (3-15)
z-+ -- . f,+ O 315r +  r p(o) a ()a ' + z  O

To express iis relation in a useable form it is necessary to eliminate (1)
the perturbation axial velocity w(l), (2) the perturbation density p(I),
(3) the perturbation angular momentum r,(') and (4) the force com-
ponents f, and f,.

The axial velocity perturbation may be eliminated through use of the
continuity equation (Eq. 2-4) which gives, to the first order,

rI az ar() w(l) I~ po
-(ru(")) + --- + Um ( u + WO) ap() =- 3-6

r() Or - 0 (3-16)

The density perturbation occurs as Op(l)/Oz and this may be eliminated
through use of the first order equation of motion in the axial direction,
Eq. 3-14. In particular the pressure p, considered as a function of p and s
in the thermodynamic sense, may be expanded

I0 10I pl ap Iap! as;0- = ,. + - 1, T

a2Ip + 6 cis (3-17)

where the speed of sound is defined as O p/Op V To the first

order then, the pressure variation of Eq. 3-14 may be written

I Op(l = a2( ) Op(l) a 2(0 ) 0s(1)
(o) Oz p(O) Oz =c7 Oz (3-18)

Thus Eq. 3-14, written in the form
aW(o) aW(l) a(o a

2 (
0)p 

)  
0) 0

u(
-) + w(0) -- - - 0--t) -~-+f 3  (3-19)Or Oz
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may be considered an expression for 8p(/Oz and employed to eliminate
the density variation that arises in Eq. 3-15. The entropy perturbation
that appfiars in Eq. 3-19 is given by the entropy relations, Eq. 3-11, while
the term 8v(')/Oz follows from the angular momentum relation, Eq. 3-7.
These substitutions into Eq. 3-15, together with some simplification, give
the result:

a ( I d,.t&W dIUM I Oltn(Q'\ au", I I 01W(\ 1
4\- r /r- AWZ2  koW-) Or - /5 - \W~ - Or'

+ 1[ I ( v(0o " j w~o) oaw(o) ,j w(0°2 I aru(
Or I + (w(0 'a( 0 )) rwu 0  u(0 (WT + r- 1 r

- ( I C - ___ a0 1 ap(
0 

___ ___

w()  w ()  r rau ) P ()  ar ] ) 1 - a 2U 0/(w ( ) 2 d

- "-U( + V( 0 )U+ () Or+0) arr) 1

[ 200) arv(o) v' )2 1 Op v(G )  Or) '° v (O)

+ T---)  + rw(' (O) Or- ra'' ) Or rw(0)'

1 ap(o.)1 aw~ v(0)2 a (Q()2 + w(0)']u(

p(O) ar w(0) O "r ra°w(0 )i r k -2

a9 [ 1 T' - 1 tD [(v(o) - wr)' + w( )2], w (°) f= r I - (w(02/a00)) 1 a,2 0 - aG 00)-sf

1 (1 aw~0 ) V(0)2 1 ap(0)1
w(°) w(o) Or to ) + () r ) 1 - (w(02/00)0 ]

-1 ' [(v(o) -r)2 + w(0)2I'-,-

Vro)2 , _a D [(dQ) - Wr)2 + w(°)2]i _ .ff + )(o )
.r()21 2 00) a2(o 00 f.

+ r2 Ovf I + I (f'  
-  r (3-20)

This is a second order linear partial differentia' equation with variable
coefficients and a nonhomogeneous term. The nonhomogeneous term, the
right-hand side, is given in terms of the force component, loss coefficient,
and known zero order conditions. Now it is known from the investigations
of Art. 2, that all force components cannot be prescribed independently
but, strictly speaking, only one of them. It is necessary to express, within
the present approxima~ion f, and f, in terms of fe and tD, considered
prescribed, and known zeroeth order conditions.
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From Eq. 2-17, giving the loss forces, it is clear that, to the present
approximation,

f(2) 0 (3-21)

f42)= _wD(V( .) W /(V(O) - wr) 2 + wM 2  (3-22)

h 2) - fDW V/(v(0) wr) 2 + w(0)2  (3-23)

and hence these are known. Also to the first order, Eq. 2-16 becomes

(O) - wr)ff " + w()fl) - 0 (3-24)

and hence, in detail, the axial foi.e component may be written

+ )- wrf) [- wr\2]' w10 )2

[ =) (3-25)

Finally if Eq. 2-23, the condition of blade continuity, be written to the
first order it follows, employing the ratio f(l)/f l) from Eq. 3-24, that

a f ) ) =- (V(O ) -r W (3-26)

Oz ea Or rw 0l)

The right-hand side of Eq. 3-26 depends only upon the radius. Conse-
quently integration from the leading edge zo to some arbitrary value of z
gives

fA1"(r, z) f(Z)(r, Zo) -(z - Zo) O (v00) - wr\
rf(r, z) rf;"(r, Zo) Or k rw bV-

or
rf,(r ZO) a (00 - w)

( f , Iou (z - zo)r (3-27)f,~ ~~ (t(r )= f9') (r, o) - O- rw--o) (-7

wheref,(r, Zo)/f#i)(r, zo) represents the inclination of the leading edge with
respect to a meridional plane.

Eq. 3-25 and 3-27 are satisfactory expressions for f, and f, to be
employed in the right-hand side of Eq. 3-20; it should be noted, in par-
ticular, that these expressions contain nothing involving the radial
perturbation velocity u(1) and consequently do not modify the left-hand
side of Eq. 3-20.

The linearized second order partial differential equation for the radial
perturbation velocity may now be written in the form

aluMX Ouj) = ¢r, z) (-28

+ p(r) ---- + q(r)u(') + (1 - A ) z) (3-28)
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where p(r), q(r) and 0(r, z) are known and equal to

li( r I Oa2 o1  + 2rM, I dw (3-2p(r) (I e 1 -M °  Or +1 - M w r (3-29)
1 [ v<°  - M 2  0210( °

q(r) =i v+") [2- (4- 7)M1 + (,y- 1)M9] _ r 2 O2w~0 )

2r( 0 ) Ov0 )  v(
Q

) 2 - (0 ) 2  r 600
)

+ w" Or w()2(1 - M,2) W Or

+ -M . 1 + M, + AL(2 - f, + tM2) + r (O 2 Or
-Mfli- a2 0 Or

2 r ow(0)] r woo (3-30)

W-( a , O i ,l/ w OrJ 1-- M r()(0 a2(0 r

I ~ ,,<o> k2 M- Owe (1~
1Mf) M.)],.-w [or Oz

'rw( 0
)
2  L \(v(O) j

+ M'- i ° 2 a(D 0) -(-r) 2 + w0)2]}

- (1 + (1 I Ow<. rM2(3 - M.)2
+ 2 I w()2 -_r)2 + w(0)2j9  ° o, [ 1- M J

a 2 (01 
3 r 1 - M , ) ] A f - - f + ( 3 -3 1 )

I~ ~ ~ ~ ~~~M Oa'Y[~2 ___}(-1

The values of M,2 and A![ introduced above are defined

M2 = a(0)2

- N (3-32)
m2 = a2-

and hence are functions of the radius in general.
To complete the problem it is necessary to prescribe boundary condi-

tions on the differential equation (Eq. 3-28). In the first place the radial
velocity disturbances should vanish far upstream and downstream of the
blade row, so that

4 - ) = u(1"(r, ) = 0 (3-33)

Secondly, the inner and outer radii are given as functions of the axial
distance down the machine and, since they can differ from circular
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cylindrical surfaces only by a quantity of small order (say a where
a << 1), they can be written

rl - r(10 + ari'"(z) (3-34)

r2 = ro) + ari (z) (3-35)

Within the linearization employed, the boundary conditions at the inner
and outer radii may then be given as

u(M(r, z) dr(1 (z (3-36)
W(O)  

dz

and
u (')(r2, z) dr , (z (3-37)

W(O)  
dz

Finally, the complete state of the gas is given far upstream of the blade
row; the quantities v(O)(r), w()(r), h(O)(r), s0 )(r), etc. are assumed to be
known. The formulation of the linearized problem is complete.

C,4. Incompressible Flow through Single Blade Rows with
Constant Hub and Tip Radii. It is often the case that the Mach
number of the flow (in the sense of Art. 2) is sufficiently low that the
gas may be considered incompressible in calculating the throughfiow.
Furthermore, near the design point it is often a fact that the axial
velocity w) far upstream of the blade row differs from a constant value
only by a quantity of order e. Then w(') may be considered constant and
any variations incorporated as perturbation quantities. These conditions,
although valid only for operating points near the design, simplify the
mathematical problem enormously and constitute a good starting point
for investigation of more complex conditions.

When the fluid is incompressible, the losses negligible, and the axial
velocity differs only slightly from a constant value w( °), the partial
differential equation (Eq. 3-28) becomes
O2u(' )  1 Ou~1 )  1 [ 1 8 1 2u l

ar2 2+ 1" r 1 1 a0 2o (rVi()) 2 uM') + -z- = 0(r, z) (4-1)

where

0(r, z) -. ) ( + 200 f. (4-2)

Consider a single blade row with hub and tip shrouds consisting of
concentric circular cylinders having radii rh and r,, respectively (see
Fig. C,4a), Assume furthermore that far upstream of the blade row the
axial velocity is uniform and the tangential velocity vanishes. Then the
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rh w
rt

IZ\,..-\ 

"\

Fig. C,4a. Single blade row with huh and tip shrouds of constant radii.

tangential velocity and the axial velocity variation are only those intro-
duced by the blade row itself so that the radial velocity perturbation is
described by

3Ut(l) I O W L) I u+ _ I o , 1 1 a ( h(
_ -+ - - - , u(" -

r r Or r- w r w z 8 r ]

(4-3)

where enthalpy perturbation h(l)(r, z) will be assumed known. The bound-
ary conditions to he satisfied are that

u()(rh, z) -u( (rt, z) = 0 (4 4)

and
u()(r, ) = u()(r, = 0 (4-5)

Theory of the actuator disk. Suppose for the moment, following [81,
that the blade row be shrunk axially into a discontinuity as in Fig. C,4b
so that the change in enthalpy entering into the right-hand side of Eq. 4-3
is concentrated at z = 0. The radial velocity perturbation is therefore a

u '(r 0 - ) - u '' (r, 0 + ) 1rt

" Z

z 0

Fig. C,4b. The simple actuator disk.
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solution of the homogeneous equation

2uM 1 8u(1)  1 83U- 1 (
+ UM + 0(4-6)

t-- - -Fr a Z2

both upstream and downstream of the discontinuity. Furthermore, the
solution is symmetric with respect to z = 0 since both the differential
equation and boundary conditions are symmetric. To determine the
solution two matching conditions across the blade row or actuator disk
must be established.

From the radial equation of motion (Eq. 2-1), it follows that the
radial velocity u0 ) can change across the actuator disk only as a result
of a concentrated radial force. Within the linearized theory, therefore,
the jump in radial velocity [u(1 )] across the actuator disk may be written

luM"] = ) d ff dz (4-7)

where we think here of the integrand as being very large, the interval very
small, and the integral the total radial force of the blade row at a given
point of the actuator disk. As a general rule in axial turbomachinery, the
radial force component of the blades exerts a negligible influence due
simply to the fact that the blade surfaces themselves are so nearly ratckial.
This observation is so general that it is preferred to assume here that
[u(')] = 0 and simply to note that, if a peculiar construction alters this
situation, the following analysis would require modification in an obvious
manner. The second matching condition follows directly from the partial
differential equation (Eq. 4-3). Since the axial and radial velocity com-
ponents are continuous across the actuator disk, the differential equation
may be evaluated on each side of the discontinuity, integrated once with
respect to z, and the results subtracted to give[IU ur10+ 1 [0h" 10+ (-

-z J0- = -W() Iar Jo - (4-8)

a condition on the difference between values of Ou~')/8z evaluated on each
side of the actuator disk.

Now a solution of the differential equation.

UM = C[J(r) Yi(Krh) - Yl(Kr)Jl(K.rh)1c-' z < 0 (4-9)

and

u ( I) 
= C.[J(r) YI(K.rh) - J(Kr1,)Y(K,,r)Je_-' z > 0 (4-10)

satisfies the boundary conditions at z = : and at r = rh, as well as
gives a continuous value of u(0) acrost the actuator disk as required
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by the first matching condition. The boundary condition at the outer
boundary, u(0)(r, z) = 0, is satisfied identically by taking the character-
istic values it. to be the roots of

Jj(Kr')Yj(jrb) - Jl(xrh)Yl(1,Cr,) - 0 (4-11)

and that there is a countable infinity of roots ordered as to increasing
magnitude is guaranteed by the Sturm-Liouville theorem. The values
of the constants follow directly from the orthogonality property of the
Bessel functions and the matching condition given by Eq. 4-8. Using the
solutions (Eq. 4-9 and 4-10),

-2 C.R[Jl(.r)Y(K.rh) - Jl(x.rh)Yl(K.r)] --- - [ Or j (4-12)
1

from which

C. = f"Ct(J(K ) Y,(K rh) J (Kjrb)Yi(Ka) da (4-13)

where v. is the norm of JI(K.r) Yz(Krb) - Jl(K.rh) Y1(K.r) and is given by

P. J, a[Jl(c.a)Yi(icnrh) - J(Krh)YI(Kna)l'da

= {r[[Jo(xc.r)YI(xrh) - J(Krh)Yo(crt)

- r![Jo(K.rh)Y(K.rb) - J(.rh)Yo(K.rh)I)j (4-14)

The radial velocity distribution is now directly calculable from the fore-
going results substituted into Eq. 4-9 and 4-10 after the integrals of
Eq. 4-13 have been evaluated.

The axial velocity perturbation is related to the radial velocity
through the continuity condition,

8w"___. 1 O(ru()) (4-15)
Oz r 8r

which from Eq. 4-10 and 4-11 yields

. C.K.[Jo (K.r)Yl(Karh) - Jl(Kfrh)Yo(KIr)e
+-'s (4-16)

1

the plus or minus sign applying according to whether the point in question
is upstream or downstream of the actuator disk. The integration to obtain
wM)(r, z) may be carried out easily to give

wMv) = - Cj[Jo(K.r) YK Krh) - Ji(K.rh) Yo(K.r)]e'.' z < 0 (4-17)
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solution of the homogeneous equation

1u0) + 1 8u() 1  IuM + 2( - 0 (4-6)Pgr +r r J z2

both upstream and downstream of the discontinuity. Furthermore, the
solution is symmetric with respect to z = 0 since both the differential
equation and boundary conditions are symmetric. To determine the
solution two matching conditions across the blade row or actuator disk
must be established.

From the radial equation of motion (Eq. 2-1), it follows that the
radial velocity uM" can change across the actuator disk only as a result
of a concentrated radial force. Within the linearized theory, therefore,
the jump in radial velocity [u(M)] across the actuator disk may be written

[u] i (0) fdz (4-7)

where we think here of the integrand as being very large, the interval very
small, and the integral the total radial force of the blade row at a given
point of the actuator disk. As a general rule in axial turbomachinery, the
radial force component of the blades exerts a negligible influence due
simply to the fact that the blade surfaces themselves are so nearly radial.
This observation is so general that it is preferred to assume here that
[u()] = 0 and simply to note that, if a peculiar construction alters this
situation, the following analysis would require modification in an obvious
manner. The second matching condition follows directly from the partial
differential equation (Eq. 4-3). Since the axial and radial velocity com-
ponents are contirlious across the actuator disk, the differential equation
may be evaluated on each side of the discontinuity, integrated once with
respect to z, and the results subtracted to give

au() 0+ 1 ah,l 0+
c0z Jo- - w_() I-8r Jo (4-8)

a condition on the difference between values of Ou(1)/az evaluated on each
side of the actuator disk.

Now a solution of the differential equation.

40 ) = C.[J 1(,Kr)Y1(K.rh) - Y1(K.r)Jl(K.r)c... z < 0 (4-Y

and

uM - C.[JI(Kr) Y1(K.rh) - JI(K.rb) YI(K.r)Je-'" z > 0 (4-10)

satisfies the boundary conditions at z = + and at r = rh, as well as
gives a continuous value of u (" across the actuator disk as required
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and

wM," -2 Y C.[J(K.r)Yl(.rh) - Jl(Kfrh)Y0(K.r)]

+ Y C.[Jo(.r) YI(K.rh) - J I(ICrh) YO(Kr)]e - C'" s > 0 (4-18)

It is of interest to note here that there is a residual axial velocity perturba-
tion far downstream of the blade row equal to -2 J' C.(Jo(Kcr) YI(IC.rh)

- Ji(oc.rh)Yo(c.r)] and that the axial velocity perturbation is just twice
that at the actuator disk itself. That this change should take place half
upstream and half downstream of the blade row is a direct result of
symmetry in the radial velocity distribution.

Since it has been assumed that the distribution of enthalpy rise is
given, it follows that the first order perturbation in tangential velocity is
also known. From Eq. 3-7 and 3-9 it may be inferred that

wr[v(")] = (h(1I (4-19)

and since this jump takes place only across the actuator disk, the tan-
gential velocity is constant (- 0) upstream of the blade row and con-
stant (m v()(r)) downstream of the blade row. This first order solution
for the velocity components is complete and agrees with that given
originally in [8).

Since the foregoing example of the linearized treatment is one of the
simplest that may be found, it is worthwhile to explore its characteristics
in some detail. Take as a special case the enthalpy jump to be

[h(l)(r)) = aw°)0 wrt ( (4-20)

Referring to Eq. 4-19, this corresponds to imparting a tangential velocity
of magnitude aw(0 )r/r, where a is a constant. Such a tangential velocity
distribution is referred to as a solid body rotation since its magnitude is
proportional to the radius.

To obtain an explicit solution, evaluation of the integrals for C. is
required:

, aw(Nor t af[J1(Kta)YI(K.rh) - J (Kr r)Yl(r.a)]da (4-21)
,. .vw(O)rt,

which integrates directly to give

(r,[Jo(K.r,) Yl(K.rh) - Jl(K.rh) Yo(K.rt)]
- 2a(w.rt)J - r1[.Io(K~rh) Yc2Kfrt) -J 1(K~rh) YO(K~r)a(K,,r,)" r2[Jo(K.?t) Y1( -rh)- JI(K.rh) Yo(K.rt)J }rh)

- r[J o(,.rh)Y1(K.rh) - JI(Kr) Y(,.r)]
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Substitution of these coefficients into Eq. 4-9, 4-10, 4-17, and 4-18 yields
the solution for radial and axial velocity perturbation upstream and down-
stream of a blade row represented by a discontinuity. As an illustration of
the results obtained, a blade row satisfying the above enthalpy jump has
been chosen having a ratio of hub radius to tip radius rh/r, = 0.60. The
characteristic values may be evaluated from Eq. 4-11, and from these all
necessary factors of the solution follow. The radial velocity distribution is
shown in Fig. C,4c for various distances upstream (or downstream by

1.0

0.6 _ -- -2

0 -0.05 - 0.10 - 0.15 -0.20 -0.25

] u(I"

Fig. C,4c. Radial velocity patterns upstream and downstream of an actuator
disk, moving with angular velocity w and imparting tangential velocity aw(Or/r,,
rh/rt - 0.6.

symmetry) from the actuator disk. As is intuitively logical, the largest
values of radial velocity occur near the middle of the channel. Actually,
however, none of these values are large enough themselves to be of sig-
nificance in turbomachine blade design. Rather it is the changes in axial
velocity that are induced by this radial velocity that are of importance.
The axial velocity perturbation computed from Eq. 4-17 and 4-18, using
the coefficients given in Eq. 4-21, is shown in Fig. C,4d. The blade row
has a quite sensible effect on the axial velocity profile at distances up-
stream of more than half a blade length. By virtue of the same sym-
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metry noticed in connection with the radial velocities, distortion of the
axial velocity continues to increase until it reaches a point about half a
blade length downstream where the maximum and constant perturbation
is achieved. These magnitudes are sufficient to distort the blade velocity
diagram significantly from that which would be estimated neglecting the
three-dimensional throughflow.

0.25 - 0.05 -0.55 z
0.55 0.05 -0.25 rt- rh

1.0 I

0.8

0 6 . .. . . . ...

'II

0.46

0.2 __

- 0.30 - 0.20 - 0.10 0 0.10 0.20 0.30

1 O

aOc.rt w
(0
)

Fig. C,4d. Axial velocity perturbation patterns upstream and downstream of an
actuator disk, moving with angular velocity c and imparting tangential velocity
aw(O)r/rt, rh/rt - 0.6.

Theory for blade row of finite chord. It is obvious that the results of
actuator disk theory do not describe the flow accurately in the immediate
vicinity of the blade row. The description may certainly be improved by
developing the theory for a blade row of finite chord. Conceptually the
blade of finite chord may be thought of as a sequence of actuator disks
and, as a matter of fact, this idea has certain merit as an approximation.
Mathematically the solution for the actuator disk may be employed as a
unit out of which to construct the solution for a blade of finite chord by
integration over the blade chord of actuator diskq of the appropriate
infinitesimal strength.
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Consider then an actuator disk located at a point z = 0 along the
axis of the turbomachine. Referring to Eq. 4-9 and 4-10 it is clear that
the radial velocity induced by this actuator disk may be written as

uM f C.[Ji(s.r) Y(icrh) - JI(.r) Yi(K.r)je".(')

upstream of the actuator disk, and as

u(I) = C.[J(.r) Y1(xflrh) - JI(Krh) Yi(K.r)le-' ('-P

downstream of the actuator disk. Now it will be assumed that such actu-
ator disks are distributed continuously along the z axis at values of # be-
tween the leading and trailing edges of the blade, as shown in Fig. C,4e.

zL- 0 0
2rI

Fig. C,4e. Continuous blade row as a sequence of actuator disks.

Then again, if h("(r, z) is the perturbation of enthalpy imparted by the
blade row, the function [a(Oh()/r)/zldz replaces the function [ah('l/arl
in the determination of coefficients according to Eq. 4-13. For the ele-
mentary actuator disk situated at z = g, the flow can be written, substi-
tuting the values of C. from Eq. 4-13,

fMrf Irh (6i aO d#

- 4a1,(K.a) Y(K.rh) - J(x.rh) Yl(K.a)][J(K.r) Y,(Krh)

2 V - JIl(Krh)Y(Kr)1 e_-1 '_1da (4-22)

where the order of integration and summation have been interchanged
with the assurance that the series possesses the appropriate convergence
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properties. One of these infinitesimal discontinuities exists at each point
of the interval over which the blade row exists and, since the problem is
a linear one, the complete solution of the original homogeneous problen.
can be obtained by summing them over the blade chord. This sum takes
the form of an integration from z = -c/2 to z = c/2 where, as shown in
Fig. C,4e, the blade chord has the magnitude c. The complete solution is
thus

) ,, J-c/2 w G(r. z; a, O)dado (4-23)
JrJ-/2 W(G) aOa

where the function G(r, z; a, 0) is just the infinite series

c[J(K.ia) Yi(Kr) - J(icr,) YI(u.Ca)][JI(Kr) Yj(cfr,)
2 Jl(Karh) Y 1 (K.r)] e9.12D0 (4-24)

2 i~v .

The function G(r, z; a, 0) may be interpreted as proportional to the radial
velocity induced at a point r, z of the turbomachine by an element of
tangential vorticity bound at a point a, 0 of the blade row.

The complete solution for the axial velocity perturbation may be con-
structed in a very similar manner, for referring to Eq. 4-17 and 4-18 it is
clear the axial velocity perturbation induced by an actuator disk of axial
length do is just

f 1 2h(l )

W()= jh w
-

° Oa dt3

. a[J(.a) Y1(Kfrh) - J(.rh) Y(K.a)I[Jl(K.r) Y,(K.rh)
2K- Jl(K.rh)Yl(K.r) e-..i"_Pda
2 K,,Y~

z < 0 (4-25)

and

W( l) = 2 j W() 0-0 dO

a[JI(Kna) YI(Kfrh) - Jl(K.rh) YI(Ka)][, i(Kr) YI(Klrh)

2 K.-- Jl(Krh)Y (Klr)1 da2 .

Sa(J(K,,a)lYi(cr,,) - JI(Kflrh) YI(K,a)]
fr - d[J,(xr)Y1 (Knr,) - J(Kr,,)Yi(Knr)]dO, w( ) 00 / 2. -.. da

z > 0 (4-26)
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Again the complete solution for the blade row of finite chord is given by
summing the above solution across the blade chord. For a point with any
axial location z, solutions of the type given by Eq. 4-26 are summed over
all values of 0 < z and solutions of the type given by Eq. 4-25 for all

8 aca r3 C r, /z

r
rh

/ C

/

Fig. C,4f. Distribution of load on blade row of finite chord.

values of 0 > z. Therefore uhe complete solution is written as

W(() a .. . . ... Jr~J w( a K(r, z; a, z3)dad 6J tf 1 a2h('~Kl ,

-~ r f, ° " O (rz;aad

fr'f I e3h( ')

+2 w °) a K(r, 0; a, #)dodo (4-27)
_rb -i W 

0 eaaO3 1 ~~~(-7

where the function K(r, z; a, 0) is defined as

a(J(Ka) YI(K.rb) - .I(K.rh) YI(K.a)l[Jo(Kr) Y1(K .r)
- Jl(K rh) Yo(Kcr)I C- 'CIs- 0

2 K,.ZV 
(4-28)

These results complete the formal solution for radial and axial velocity
perturbations induced by a blade row of finite chord. It is instructive to
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use the example employed for the actuator disk as an illustration of the
present theory for finite blade chord so that the results may be compared.
Therefore in addition to the radius ratio rh/r, = 0.60 consider a blade row
of chord c with a chordwise load distribution as shown in Fig. C,4f. For

0.6 --8 _

.r .0r (

I I -1 II , i~il; I:/

O0 -0.05 - 0.1 -0 .15 - 0.20 -0 .25

1 un\

F'ig. C,4g. Radial velocity patterns upstream, downstream, and within a blade row
of finite chord, moving with angular velocity w and loaded as indicated in Fig. C,4f,
rh/rt -" 0.0.

the first half of the blade row the value of (1/w 0 i)(Ol~h(1 )/OaOJ) is given by
a w< (4-29)

and for the s cond half of the blade row,
I a h r 8a _ ) 0 (4-30)

I >a a C12 V) 8 ' ( --2 0 6_ # (430

The total work added by this distribution is identical with the total work
added in the actuator disk discussed previously. The results may be ob-
tained explicitly by integration of Eq. 4-23 and 4-27 employing the values
of enthalpy given by Eq. 4-29 and 4-30. This operation involves only
algebraic complexity and the formulas, because of their length, will not
be quoted here. The radial velocity distributions are given in Fig. C,4g
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for axial stations within the blade row as well as both upstream and down-
stream from it. The slight asymmetry of the flow pattern caused by the
unsymmetrical loading of the blade row is noticeable. Of somewhat more
technical interest are the distributions of axial velocity perturbation
shown in Fig. C,4h. For comparison the axial velocity perturbations for the
actuator disk are shown on the same curve. The differences are certainly
noticeable but not marked. Remembering then that the present results

0.55 0.05 - 0.25 - Z z

1.0 0.25 - 0.05 -0.55 rt-, rh

0.8 - ---- - - -

0.6 III

0 .4 - .. .. .. ......... .. . .

0 .2 - .. . .... .. . . .

o L
-- 0.30 - 0.20 - 0.10 0 0.10 0.20 0.30

1cr wm

Fig. C,4h. Axial velocity perturbations upstream, downstream, and within a blade
row of finite chord, moving with angular velocity w and loaded as indicated in
Fig. C,4f, rh,/rt = 0.6.

hold for a blade whose ratio of length to axial extent is 2.0, it appears
that for blades of high aspect ratio, such as those in the first few stages
of current axial flow compressors, ordinary needs do not require the treat-
ment of the finite blade chord. On the other hand, turbomachine blade
rows with an aspect ratio of 1.0 or less do require consideration of the
finite blade chord for accurate construction of velocity diagrams.

Effect of large tangential velocities. The discussion so far has been
restricted to examples where the tangential velocities of the fluid were at
most of the first order. This fact permitted simplification of the differ-
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ential operator on the left-hand side of Eq. 4-1 and reduced the non-
homogeneous term on the right-hand side to the very simple result given
in Eq. 4-3. It is usually the case in multistage axial turbomachinery, how- '5
ever, that although the change in tangential velocity across a blade row
is small, a zeroeth order tangential velocity v00 exists which is of the same
general magnitude as the undisturbed throughflow velocity w(O). The
differential equation describing the radial velocity in this case is then
given by

0 2u' l OuM 1 0 (rV(1)),2_ 1 + a2uo"

+1- - +I (1 0 +1h
-w z L r r ) wO° ) .rOz (4-31)

The differential operator is complicated in an essential manner by intro-
ducing an additional variable coefficient of uM1); the addition of a term
depending upon the tangential velocity perturbation introduces a new
function on the right-hand side but does not really change the problem.

In the particular case when the zeroeth order tangential velocity is of
the vortex type, that is v0 )  - 1/r, the term rv(O) is a constant and the
expression (I1/r1w(4)2)O(,<r))2/8r vanishes in Eq. 4-31. This leaves the
differential operator, and hence the formal solution to the problem,
exactly as it was for v00 = 0 except that now the inhomogeneous term
of Eq. 4-31 replaces the simpler one of Eq. 4-3. A more interesting and
significant example of large zeroeth order tangential velocity occurs when
the tangential velocity is of the solid body type. Assume that the tan-
gential velocity is given by

00) = bw(O) r (4-32)
rt

where b is a numerical constant. The differential equation (Eq. 4-31) then
becomes
a2ujtM 1 IP0 )  2 12 ]li...

a- r-  + - - i + _z

b [ I # 1 1 2 h(l) (4-33)= z [ r~rt (r~v ')) - w(O) OrOz (-3

It should be noticed in particular that the additional coefficient on the
left-hand side multiplying uO) is a constant (2b/rd) 2. The solution may be
worked out in very much the same way as it was for Eq. 4-3. It is readily
determined that the radial velocity for an actuator disk located at z = 0
is given by

= ) C.[J1 (K.r) Yl(K.rh) - J(K.rh) Yj(Knr)1eC- X.
1S (4-34)
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where now the K. are still the roots of Eq. 4-11 and the X. are given by

bL (4-35)

The constants C. are given by

C.a(Jl(Kva)Yd~rh) - J|Kfrh)Yj(K~a) ba

a Jm da (4-36)

The modification to the constants C,, is obvious inasmuch as it simply
makes use of the new inhomogeneous term appearing in Eq. 4-33. The
significant change is the modification of the exponents e- -1I appearing in
the solution, Eq. 4-34. In aircraft gas turbine practice it is almost invari-
ably true that 12b/rtl < K, and consequently all of the X. are real and
nonvanishing. Thus the effect of a solid body rotation imposed upon the
fluid far upstream of the blade row is to cause any disturbances gener-
ated by the blade row to decay more slowly upstream and downstream
of the blade row than they would in the absence of a zeroeth order ro-
tation. This effect is particularly pronounced upon the lower Bessel com-
ponents corresponding to K1, 2K, and K3 since the exponents associated
with them are reduced in magnitude proportionally more than the higher
Bessel components.

After having observed the nature of the modification introduced by
solid body rotation it is simple to complete the solution for both the
actuator disk and the blade of finite chord. For the actuator disk the
axial velocity distribution is given by

w(l) = f-"--[Jo(Kr)Y(K.rh) - J l(Kcrb)Yo(K.r)e "
- z < 0 (4-37)

I

and

w ( )
= -2 Y - jJo(K.r)Yl(r) - JI(.rh)Yo(.r)]

+ -- [JO(K r)YI(K.rb) - J(Krh)Yo(K.r)]e-'z > 0 (4-38)

These demonstrate results that were intuitively clear from the previous
calculation of radial velocity distribution. The over-all perturbation to
the axial velocity, from far upstream of the blade row to a point far
downstream, is changed because the values of C.K./X. entering into the
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term

-2 - [JO(,r) YI(Kfrh) - Jl(,Krh) Y(Kfr)]

are changed due to the function (b/r~rt)O/ar(rv0')) that enters into the
integral for C. given by Eq. 4-36. Referring stiil to Eq. 4-36, the term
[ah(I)/arl is a measure of the tangential vorticity generated at the actu-
ator disk due to actual work being done by the blade row. The new term
(b/r 2rt)O/Or(rv(')) is of different origin. It arises from the fact that some
of the axial vorticity, associated with the solid body rotation, is turned
by the perturbation tangential velocity so that it becomes tangential
vorticity. The second result is that this change of axial velocity profile
starts farther upstream and completes farther downstream in the pres-
ence of solid body rotation than it does when no zeroeth order tangential
velocity is present.

The resulting radial and axial velocities for a blade row of finite chord
can be obtained immediately through simple modification of Eq. 4-23,
4-24, 4-27, and 4-28. Wherever the term

1 02h(l )

w (  OrOz

appears, it should be replaced by the term

I a bw(°) a (rlv(l)) + h")
w (° ) 8z r2rt rr

wherever the characteristic value ic. appears in the exponent e-9'-1- 01, it
should be replaced by X,. to give e - 1- ' where X. is defined through Eq.
4-35. The gross results discussed above for the actuator disk apply also
to the blade of finite chord. These effects are generally the same, in fact,
whether the zeroeth order tangential velocity is of the solid body type or
whether it is different. The particular example used is especially signifi-
cant, however, since a mean solid body rotation is so frequently employed
in axial compressors. Methods for treating more general distributions of
zeroeth order tangential velocity will be deferred until later when the
appropriate asymptotic expansions are discussed.

The entrance vane. Second order theory. The results discussed so far
permit adequate treatment of every blade row in an axial turbomachine
with the exception of the entrance vanes or guide vanes. Because the
guide vanes are a stationary blade row the perturbation enthalpy h(l)

vanishes and since there is no zeroeth order tangential motion upstream
of the guide vanes, the term rv(1) vanishes also. Consequently the right-
hand side of Eq. 4-31 vanishes so that the radial velocity and axial veloc-
ity perturbation vanish identically. The first order perturbation theory is
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inadequate therefore to deal with the guide vane problem. A second order

calculation must be made, therefore, explicitly for the purposes of the

guide vane. The fact that the radial velocity and axial velocity perturba-

tion are of the second order carries no implication that these effects are

small. Actually the effects are as large as or larger than those induced by

ordinary rotor or stator blades; the fact that they show up as second

order effects is due, as will be seen, to the quadratic nature of the pertur-

bation term. It is also an indication that, since the change in tangential

velocity across the guide vane is considerably larger than that across

rotor or stator blade rows, the guide vane problem is not treated with the

same accuracy of approximation by the first order analysis as are the
other blade rows.

To investigate the guide vane flow, restrict conditions to a uniform

zeroeth order axial velocity, wC°) = const, along with the previous assump-

tions of cylindrical inner and outer boundaries, no losses, and incompressi-

ble fluid. From calculations of the previous section it is clear that the first

order radial velocity and axial velocity disturbance vanish identically,
that is,

uM - 0 (4-39)

in spite of the fact that v 1) 0 0 and may, in fact, be rather large. The

flow field is defined again through Eq. 2-1, 2-2, 2-3, and 2-4 and for pur-

poses of the perturbation we call

U = 6
2U (2)

V = eV") + e2v(2)

S= W- 
)  -+ e

2 (2)

p = p(O) + ep(l) + e2p(2) (4-40)

F,= ef,

F.= efe
P, 41

where account has been taken of the fact that the first order perturbation

of radial and axial velocity vanish identically. Substituting into the equa-

tions of motion yields both first and second order parts. In the axial

direction the first order relation is
1 Op(l)  (4-41)

whereas the second order part is
OuM vM 2  I10p (2)

w(1) (4-42)
z r r
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From the tangential equilibrium relation the first and second order parts
are respectively

W() (rV(1)) rfe (4-43)

and

D 2- (rv(2)) 0 (4-44)

In the axial direction the first and second order parts are respectively

f .- (445)

and
Ow(2)  1 ap(2) (446)w(° --Z- P a4-4z

It is interesting to note that the radial and axial force field produces
a first order pressure field within the blade row itself but no radial or
axial velocity field. Moreover the tangential velocity distribution is en-
tirely accounted for by the first order relation, Eq. 4-43, and the second
order part v(1) vanishes identically according to Eq. 4-44 and the initial
condition that the tangential velocity vanishes identically ahead of the
guide vane. The second order velocity field is then defined by Eq. 4-42
and 4-46 in addition to the continuity equation

Ou(2) u(2) O()W(2

-+ - - =0 (4-47)
Or r O

It is a simple matter to eliminate the second order pressure p(2 ) and axial
velocity perturbation to give

Oau(2) 1 u()_ u(2)  O2u(2 ) 1 a (V()2\
r- r2-  + r Or r; +  Tz- =w (°- i Y r] (448)

where the tangential velocity distribution v01 ) is either prescribed or is
known from prescribed tangential blade force or blade shape. The mathe-
matical problem is therefore exactly that treated in the solution of Eq. 4-3
where now the known function

1 a (V(1)2)
w ) Oz r

replaces the term
1 a (ah(l)\

w(O) Oz Or

The corresponding solutions for the actuator disk and for the blade row
of finite chord may be carried over directly with the above substitution.

For example consider a guide vane, approximated by an actuator disk,
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which imparts a solid body rotation to the fluid. The jump in tangential
velocity across the blade row may then be written in the form,

[v(')] = bw(O) r(4-49)
t

The term of interest here, corresponding to the right-hand side of Eq.
4-8, is

1-( j [ - = r2 - (4-50)

so that the equation for the coefficient C. to be employed in expansions
(Eq. 4-9, 4-10, 4-17, and 4-18) may be written as

C. = _b2 W(') f--- a2[j,(,Ca)YI(K.rh) - JI(K.rh)Yi(#ca)Ida (4-51)

These coefficients differ only in the multiplicative constant from the ex-
ample of a rotating blade row treated earlier, the results of which are
shown in Fig. C,4c and C,4d. Comparison with the appropriate coeffi-
cients of that example, given by Eq. 4-21, shows that by replacing awrt in
Fig. C,4c and C,4d by the product - blw(O) from the present problem,
the curves in these figures apply equally well to the present example of a
guide vane. The radial and axial velocity distortions are therefore similar
in the two situations but of opposite sign. Exactly the same parallel exists
between the solutions of Eq. 4-48 for a continuous blade row imparting
solid body rotation and detailed solutions for a rotating blade row given
in Fig. C,4g and C,4h.

Asymptotic expansion of the Bessel functions. In a great number of
instances the hub ratio ri/rt is sufficiently large that the characteristic
values K,, the roots of Eq. 4-11, may be approximated by their asymptotic
representations with good accuracy. This technique offers considerable
simplicity in the calculation of some complicated summations involved.

The asymptotic representations of the Bessel function for large values
of the argument K r may be written as

JI(K.r) sin (K.r)- cos (K.r) + 15 + ]= \/-r 1 f2 828(K.r)------ + '

sin (Kr) + cos (Kir)[ 3 + (4-52)
%/T.r 8(r)

and
Yt(Ksr) Sin (Kr) + cos (KRr)r 15 +-I(K~) VTK.y r  128(gcr)+•

sin (Kcr) - Cos (Knr) 3 +(5+ IV/ r-n I8(K~r)VL + ] (4-53)

Furthermore the Bessel functions of zero order may be written in asymp-
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totic form

Jo(Kr) =cos (ec.r) + sin (K.r) [ + +-r 1+ 128() + "

+ sinl (Kr)-COS (Kr) + ' (4.54)

sin (.r) - cos (Kxr) [ + I
oQcrTV/-r + 128(ti.r)' + "

cos (K.r) + sin (K.r)[ 1 ]

- -. r +  " (4-55)

In general it will be sufficient to retain only the terms in the brackets that
are independent of the argument. On this basis the function that occurs in
the solution for the radial velocity may be written

-2
lJI(Kr) Yl(Kcr,) - JI(Kfrh) YI(xcr) 2 sin K.(r - rh) (4-56)

The characteristic values for the asymptotic calculations are then, accord-
ing to Eq. 4-11, given by

2 sin t( - rh) = 0 (4-57)

which then establishes them as

. -- (4-58)r, - rh

The accuracy with which these characteristic values check the true roots
of Eq. 4-11 is a reasonable measure of the accuracy that can be expected
from the asymptotic solution. Consequently the values of the character-
istic numbers IC.rh are tabulated below for the first 10 roots calculated
numerically and estimated from the asymptotic result for the radius ratio
rh/r, - 0.6. For all practical purposes the asymptotic values are identical

nitn rt/rh - 1

1 4.758051 4.712389
2 9.448369 9.424778
3 14.182998 14.137167
4 18.861456 18.849556
5 23.571475 23.561945
6 28.282281 28.274334
7 32.993535 32.986723
8 37.705076 37.699113
9 42.416800 42.411502
10 47.128604 47.123891
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with the exact characteristic numbers for n > 4. Furthermore the error
involved in employing the asymptotic values entirely is not very large
and usually well within the error made in applying the throughflow analy-
sis in the first place. In this case the functions for the radial velocity
distribution may be written

Jl(Kcr)YI(K.rh) - Jl(K.rh)Yl(Kgr) (r sin nr(-T-rh/

(4-59)
Using an argument that is exactly similar, the functions appropriate to
the axial velocity perturbation may be written asymptotically as

-2 rt-1
(o nr( r rh

Jo(K.r) Yl(f.rh) - Jl(Krh)Yo(Kr) C i)osnr(-r )

(4-60)

The use of these asymptotic functions simplifies the numerical calcu-
lation of a given problem in two ways. First, the actual determination of
the characteristic values is made simpler and the evaluation of the func-
tions is trivial. Second, the infinite series involved may often be summed
directly to give a closed result. For example, the function G(r, z; a, 0)
appearing within the integral giving the radial velocity for a blade row
of finite chord, Eq. 4-23 and 4-24, may be written asymptotically as

G(r, z; a," ) -

S coshr(z + CoS(a r)

-8 -ln I CS\T a - + ' - rh I
Cos 7tr b \ rt - rh rt -rh/J
k kr, - rh)\, r,-r/

This demonstrates the fact, which was intuitively clear before, that the
function G(r, z; a, 9) has a logarithmic singularity at a = r, z = 0. This is
equivalent to the statement that an annular vortex ring at the point a, 0
induces infinite radial velocities in the immediate neighborhood of the
ring. In a similar manner the function K(r, z; a, fl) involved in calculation
of the axial velocity perturbation, Eq. 4-29 and 4-30, yields the asymp-
totic expression

K (r, z;a1) [o' in cosh 1- h

8 Fr / \ arh rh\1

c os r cosh -:_) + coslT( + r r

+ o r\ - r rt-rh rt - r rt - r/j

(4-62)
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In exactly the same fashion as the radial velocity, the axial velocity per-
turbation induced by an annular vortex element is logarithmically infinite
in the neighborhrod of the element. Eq. 4-61 and 4-62 are extremely use-
ful in problems that require consideration of a blade row of finite chord.
Using these results the integrands of Eq. 4-23 and 4-27 may be evaluated
algebraically and the integration carried out by conventional numerical
means, insuring the appropriate treatment of the logarithmic singularity.

For many examples the series involved in a calculation cannot be
summed directly but they can be placed in a convenient closed form for
calculation. Consider, for instance, the actuator disk problem which was
solved previously; the radial velocity is given by Eq. 4-9 and 4-10, and
the coefficients are given explicitly by Eq. 4-21 et seq. Formal substitu-
tion of the coefficient into Eq. 4-9 and 4-10 yields a series which con-
verges as I/n 2 but which cannot be summed directly into a closed form.
The first derivative of this series can be summed easily, however, so that
the radial velocity component appears as a definite integral. After carrying
out these processes and some simplification, the radial velocity becomes

a , 0 _ _ / - ( Lh / . \ + r: [ I n 1 - ,2- i- z i

i r ',t rb b I1+ tr

+ 2ert-,b cos ir-_) dE (4-63)

The integrand is regular within the domain of interest and elementary
numerical integration may be used to determine the radial velocity at
any point of the field. The asymptotic representations for the Bessel func-
tions permit convenient computational procedures of this sort in many
instances.

C,5. Solutions for Variable Hub and Tip Radii. It is nearly al-
ways the case in actual turbomachines that hub radius, tip radius or both
vary along the direction of flow. In many instances, for example in the
early stages of a multistage compressor, the hub and tip radii vary so
much that the change of radius through a given blade row must be taken
into account in determining the throughflow. It is true that a significant
portion of this change in radius may be to compensate for tensity changes
in the fluid which, in the present section, are being neglected. However,
the general flow pattern is not so greatly changed by this compressibility
effect but that the incompressible flow patterns give most of the necessary
information.

In order that the conditions of linearization be satisfied it is necessary
that the distortion of the hub and tip contours induce only first order
radial velocities. Since the axial velocity is of zeroeth order this restriction
requires that the slopes of the surfaces be of order r at the most. Then it is
clear that the problem of throughflow with variable hub and tip radii
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may be stated
O'us"' 1 Ou ' [~ 1 O(rv(0 )] 1 Ou( )

8r2 +r 1 r8[ 11 O-r + - ,(r,z) (5-1)

with the boundary conditions

u(')(r, -co) = u(C)(r, ') = 0 (5-2)
and

uM drtj(-) = j on r = r, (5-3)

uM1  dr!I-'-'=" on r = r (5-4)

w0 -0 dz

where the quantities r,(z) and rh(z) refer to the variable hub and tip radii
given by Eq. 3-34 and 3-35. Since the problem is linear it can be solved in
two parts. The solution of the inhomogeneous differential equation with
homogeneous boundary conditions, uM1 )(rh, z) = U(')(r., z) = 0, is the first
part and this was discussed in the section covering constant hub and tip
radii. The second part is the solution of the homogeneous differential
equation:

olu ( I) I0u(' I I ) 0(rv(0))\ 1l2u(l)

4
2

Fr
2 + r Or r2 l rw (0)2  r J u M 

+  M 0 (5-5)

with inhomogeneous boundary conditions given in Eq. 5-2, 5-3, and 5-4.
The sum of these two solutions satisfies both the inhomogeneous right-
hand side of Eq. 5-1 and the inhomogeneous boundary conditions.

Throughflow with variable hub radiu8. Consider the particular in-
stance where dr,/dz = 0 and drh/dz = fh(z) in Eq. 543, 5-4 above. Assume
furthermore that the zeroeth order tangential velocity v0 ) is either zero
or of the vortex type. The most convenient technique of solution is the
Fourier transform with respect to z, the axial direction. Denote

U(r, k) = O u(')(r, z)e-ik*dz (5-6)

the Fourier transform of the radial velocity component. Then the homo-
geneous differential equation (Eq. 5-5) becomes

d1U I dU (
drU + r - (k2 + U = 0 (5-7)

while the boundary conditions are

U(r,, k) = 0 (5-8)

17(rh, k) f fh(z)e-ik-dz = w(O)Fh(k) (5-9)
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Now the differential equation (Eq. 5-7) has solutions JI(ikr) and YL(ikr).
By employing the Fourier inversion theorem it is not difficult to show
that the radial velocity induced by the hub radius variation is

u(1 )(r, z) _ 1 F(k) J(ikr) Y1(ikr,) - J1 (ikr) Y1 (ikr) eikdk
= F2,Qc Jl(ikr) Y(ikrt) - J(ikr') YI(ikrb)

(5-10)

Explicit solutions for particular forms of the hub shape are obtained by
evaluation of the integral in Eq. 5-10, most generally this involves contouw
integration.

z=-Iz=Oz----

Fig. C,5a. Axial turbomachine with variable hub radius.

Consider a particular example where the hub slope is given by

fh(Z) = lr- cos ff; IzI21 21(5-11)

h(Z) = 0; IzI I 1

as shown in Fig. C,5a. Then the Fourier transform of the boundary shape
yields

F ( r 1 y cos k1h(k) = ¥ (rh\ 1 ( /2 ) -os kl (5-12)
\J) ) (ir/21)2 - ki

In anticipation of employing the technique of contour integration to
evaluate the radial velocity component, it is worthwhile to note that
the integral in Eq. 5-10 may be rewritten in terms of the Hankel func-
tions H1'1(ikr) and H?2I(ikr) of the first and second kind to give
uM (r, z) r ir

w(°)  l 4l

f cos k1 [ H 1 (ikr)H')(ikrt) - H 1(ikrt)H('(ikr) 1 elk~dk

(,r/21)1 - k2 H ) (ikrh)HV)(ikrt) H ')(ikr)i1)(ikrh)1
(5-13)

But if the complex variable a is denoted a = + - ik, then the complex

( 129 )



C • THREE-DIMENSIONAL FLOW IN TURBOMACHINES

integral to consider is

-rh i cosh al r H1 I(ar)H '(art) - Hes(r,)Hd (r) 1
41 J (r/2l)2 + 0 1 H 1 (orh)HV"(art) Hj1 ,(art)H1,(ar)j e"du

(5-14)

and it is necessary to evaluate this over the imaginary axis. Now the
integral has poles at a ± ir/ 2 1 and at the roots of the denominator

Ilk

21

H K1 I(K2 K 3 K4 KS

a plane

Fig. C,5b. Contour for evaluation of radial velocity integral, z 9 -1

H(rh)H(P(art) - H(11(ar,)HP(crr,) = 0. There are an infinite number

of these roots on the positive real axis; they are in fact lust the roots K. of

Jl(Kc.rh)Yl(Knr,) - Jl(Krt)YJ(Kjrh) = 0

which occurred previously in the problem for constant hub and tip radii.
Using the contour of Fig. C,5b indented about the two singularities on
the imaginary axis, the integral along the imaginary axis may be evalu-
ated in terms of the residues on the real axis provided the integral along
the arc vanishes. This condition is assured when z < - 1, that is, upstream
of the wall curvature. Evaluation of the residues gives the value of the
definite integral in Eq. 5-13 to be
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UM - T ~I

Scosh Kl J(Kr)Yj(#.r,) - JI(Krt) Y I (K.r)
(r) 2 + ,rh.Jo(,rb)Y(r) -J (5-15)

+ rt[Jj(jrh) Yo(K,,r) - Jo(K.rt) Y,(,.rh)]J)

In exactly the same manner, with the exception that the arc of the con-
tour is drawn in the left half plane, the solution for z > I may be written
U ( 1 )  

rh v2

W-0)  T 1

cosh KlJ JI(Kr) Y I((Krt) - J I Y(KKr) Y.I(K,,r)
(r/21)2 + # 1 rh[J0(Krh) Y(xrt) - J(K.rt)Y0(K rh)j } (5-16)

1 [ + rt[J(Krh) Yo(K.rt) - Jo(K.rt) Y(K.rh)])

To find an appropriate solution in the region -I f. z _ 1 requires some-
what more consideration. The complex integral
11 = - h '

f (cosh at + sinh at) H(l) (ar)H?) (art) - H~1,(t)H(or) 1e,' , (5-17)J r/21) 2 + a 
2( - H 1 (crt)g 2 ,(crh) J

converges when evaluated over a contour consisting of the entire imagi-
nary axis and large semicircle in the right half plane, provided that
z > -1. Similarly the integral

rh 1ri

f (cosh al - sinh al) [" H'"(ar)H121(art) - H('(ar)H~ (cr)H 1(1I I I (ar)e- (5-18)J (/21) c2 L ~(rhH2 (r)- H( 1(arl)H(11(crh)J

converges when evaluated over a contour with its large semicircle in the
left half plane provided z < 1. These two integrals have the common
region of convergence -1 ;5 z 5 1 and half of their sum is equal to the
integral required, that is u(')/w(0 ) = 11(1 + 12). Carrying out the evalu-
ation in detail gives the radial velocity distribution

r lrr\ /rr) r\-r
11 K, !- Ir1 1- K, wr-)uM )(r, Z) Vrh (TI) k2TI -'21/ \21i r

w~) [11(2) 1  ~) 1(TI) 21( ] o
rh 1r cosh K,Z J(~),Kr) J(~tY(,

21ly (ir/21)2 +2 rJo(Krh)Y(K~rt) - jK,%Y0Kr~
+4 ~ rh[Jo(Kr) Y(K,rt) - J(Kr) Y(Kr)]

(5-19)
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It is an elementary matter to develop the corresponding relationship for
the axial velocity perturbations. From the continuity equation it follows
that

01) -(-) 1 dz (5-20)

where the appropriate representation of u(1 )/w(°) must be employed in
each of the three regions. Assuming the axial velocity undistorted far
upstream of the hub curvature, the axial velocity perturbation in the
region - z ;5 -1 may be written, using Eq. 5-15, as

(1) 112

,, cosh K.1 e Jo(x.r) Y(xr,) - J j(K.r) Yo(K.r)
.(ir/21) 2 + K' rh(J0(~rh) YI(xcrt) - JI(KRr.) Y0(.rh)

I [ + r,(Jj(j.rh) YQ(K(r,) - Jo(K.r,) Y1(K.rh)]

- :_ z -5 -l (5-21)
Similarly

_'' = 0 rwr- K, \r-] - I, \-r-] Ko Trz
rh ... (Tr) (2) 1 +sin)U'0 1 1 (Lrh) K wt - I, (!2r) K, b

+Lhr22 1 + e-1-1 sinh (,.z) ( J0(Kr) Y,(,K.rt) - J(,rt) Yo(.r)
IT1 (w/2)2 + K2 'rh[Jo(Irh) YI(Kr) -Ji(rt) YO(Krh)]

1,+ r[J((K.r) Yo(#.rt) - Jo(Krt) Y1(#C.rh))J
-l <z l (5-22)

holds in the region where the actual wall curvature exists. Finally, down-
stream of the wall distortion,

wm I0 [ 1,( ) K , ( L;t) - , r t K ( ,)

rh T2 2 ... cosh scl Jo(K.r) Y,(K.r,) - J,(K.r,) Yo(K.r) '
121K.(i/12 c rh[Jo(crh) Yi(Kcr,) - JGCKrt) Y4(Kcrh)1

1 + rt[J(.rh) Yo(.rt) - Jo(K.rt) Y1(Kr)j

1_ z (5-23)

Up to the present time, exact calculations utilizing these results have not
been carried out, partly for the reason that an adequate approximation to
this solution may be made. This will be indicated in a later article where
an example will be presented.
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Throughgow with variable tip radius. When it is the tip radius rather
than the root radius that varies along the direction of flow, the procedure
for calculating the flow is changed only slightly. If now drt/dz = ft(z) and
drb/dz - 0, Eq. 5-9 is replaced by

U(r, k) w ( ft(z)e~kdz w(0'Ft(k) (5-24)Uk) V2i -

Similarly the Fourier inversion gives, corresponding to Eq. 5-10,
uO)(r, z) 1 F,(k) J(ikrh)Y(ikr) - JI(ikr)Yr(ikrh) ] k

weZr vJ" 1.. J ) YI(ikrt) - J(ikr,) YI(ikr) ]

(5-25)

Note here that only the numerator of the bracketed term is changed from
its value in Eq. 5-10 where the hub radius is varying. Hence, in the en-
suing contour integration, the only differences that appear from the previ-
ous case are modifications of the numerator. If, for example, the slope of
the tip contour is given as

ftnz = e os 5; IzI
21 1 (5-26)

f(z) = 0; IZI I

while the hub diameter remains constant, the appropriate solutions for
the radial and axial velocities can be obtained by substituting the
expressions,

J(K.rb)Y(#c.r) - Jl(.r)Y(crh)

J(.r) Ya(c.r) JO(.r) Y(.rh)

S(21)Ko(TT) 12-

respectively, in place of the expressions,

J(.r) Yx(Kr,) - J(Kr) YI(K.r) (528)
Jo(K.r)Y(K.r,) - J(K.r,)YO(K.r)

Ir\L , wII'rt K0 o i

at the appropriate positions in the numerators of Eq. 5-15, 5-16, 5-19,
5-21, 5-22, and 5-23.

It is clear also that, since the problem is a linear one, the situation
where both hub and tip radii vary can be treated by superposition of the
perturbations caused by hub variation only and tip variation only.

C,6. Effects of Upstream Conditions and Compressibility. The
throughflow with strong tangential velocities imposed far upstream was
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treated earlier only when the tangential velocity distribution was that
corresponding to either a vortex (v(0) - /r) or a solid body rotation
(v(0 ) - r). In practical cases the tangential velocity is often of a more
complex nature and cannot be treated easily within the framework of the
theory developed so far, since the variable coefficients that occur in the
partial differential equation for radial velocity give rise to special func-
tions whose type depends upon the velocity distribution. This is quite
unsatisfactory for the development of a useful theory. Furthermore it is
not unusual that a strong variation of the axial velocity w(O)(r) should be
imposed far upstream of the blade row. This introduces a similar situ-
ation to the general tangential velocity distribution. Both of these up-
stream velocity distributions have in common the property that, in the
absence of compressibility effects, they influence only the coefficient q(r)
in Eq. 3-28 and leave the coefficient p(r) = /r.

On the other. hand, when the tangential and axial Mach number
values are of significant size to merit consideration, the coefficient p(r)
and the coefficient of 02u()/8z0 are involved so that the problem becomes
a good bit more complicated. Since it is almost never possible to consider
the Mach number values Me and M, as independent of the radius, it is
necessary to deal with the situation where all of the coefficients in Eq.
3-28 are, to some extent, functions of the radius.

It is clear that anything to be done must, moreover, be of an approxi-
mate nature since an exact treatment would prove intractable. The
method to be developed will utilize an asymptotic solution of the ordi-
nary differential equation

d2 U dUdr2 + p(r) dU + [K(1 - M.) + q(r)]U = 0

that arises from Eq. 3-28. The method, first applied to this problem by
Rannie (22], rests onthe fact that the first characteristic value 1C, is large
in some sense. Physically this requires that the hub ratio rh/rt should not
be too small, since KI C- ir/(rt - rh). Under these conditions the prob-
lem may be treated by the well-developed procedures described by
Erdelyi [23].

Variation of tangential and axial velocities. Suppose that flow may be
considered incompressible but that large and arbitrary variations with
radius occur in the tangential velocity v()(r) and axial velocity w(0)(r)
prescribed far upstream of the blade row. Then, writing the coefficients
in detail, Eq. 3-28 becomes

O2u ) i1 Iu(')+ + 2v (° ) d(rv()) r d 11 dw(_0)
r rf2 r_ (0 )2  dr - wO d\r dr /]

+ p -(r, z) (6-1)
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If solutions are of the form e±'-'Uft(r), as was appropriate for the blade 4
row in a channel of constant hub and tip radius, the function U.(r) satis-
fies the equation

d2U IdU I r d_ I w,)2) Uv()
dr' rdr - r2  w( 0)dr dr - r-wO)2  dr

(6-2)

where the characteristic value 4c is to be considered large in comparison
with other quantities in the problem. For convenience, introduce the new
dependent variable V. = N/r U.; the differential equation transforms
into

d1V. +3 -r d (1 dw(0)\ 250) d(rv(O))1V 63
dr1  .4r2  w(O) W dr + r2w(0)2  dr I

so that the first order differential is suppressed. For any distributions
v(0)(r) and w(0)(r) the coefficient of V,(r) is a certain known fuuction F(r)
which may be written explicitly as

F(r) = -3 r d (I dw(O) \ 2v00) d(rv(0 )) (6-4)

4d \r dr) + r2w°  dr

The differential equation to be solved is then
d2 VRdrV + [K + F(r)]V. = 0 (6-5)

which in the case of constant hub and tip radii must satisfy the conditions

VR(r,) = V.(rh) = 0 (6-6)

Now this may be considered as a differential equation with large param-
eter K. and solved by an asymptotic method. Choose the solution to be
of the form,

V,(r) = e 0 (6-7)

that is, the argument of the exponential function is expanded in inverse
powers of the large parameter K,,. Substitution into the differential equa-
tion (Eq. 6-5) gives the formal result

K ;j + (a.), + 2aKj ., + ( J' K + K + F(r) = 0 (6-8)

0 0 0

and since , sets the order of magnitude, the coefficients of each power
of K, must vanish identically. The coefficient of K4, the greatest power of
K,,, gives a' + I = 0, or

C (6-9)
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Similarly the coefficient of s, may be written as 2a-i - 0 so that the
coefficient pe is a constant. Proceeding to the power O, the coefficient
reads

,' + 2api + (o)' + F(r) - 0 (6-10)

Taking account of the constancy of po, this gives the function qpi as

1P f' F(r)dr (-1

where the lower limit of the integral is left arbitrary for the moment.
Further coefficients may readily be obtained in a similar manner, but
those obtained so far are adequate to demonstrate the technique. To the
order of /ic, then, the functions V,, become

V,,(r)=e2ca

Since it is required that the V. vanish at hub and tip radii, choose the
linear combination

V.(r) = sin -(r - r !) J F(r)dr] -12)

where values of po and a have been selected to make the V. vanish at
r = rh. The large parameter K. must be chosen so that

ic.(r. - rh) + 2 f- F(r)dr = nr

To the same order of accuracy, then, the value of K. may be calculated as

K nir I - rt - r f F(r)dr (6-13)
S-r -2nr f:

Transforming back now to the original dependent variable and denoting
If tF(r)dr = g(r) the appropriate characteristic functions of Eq. 6-1 may

be written

sinIn + r'~? r [ ~)g(. errh[ rt)

V'r i r- rh -- nr rt -rh rj

(6-14)

where terms of higher order than ((r, - rh)/n] 2 have been deleted. It is
now a simple matter to build solutions from these in precisely the manner
that the Bessel function combination was used in the development follow-
ing Eq. 4-9. The functions possess the appropriate orthogonality property
since they satisfy a problem of the Sturm-Liouville type.

Before discussing particular solutions, two features of this asymptotic
solution should be observed. In the first place, suppose either that the
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function F(r) = 0 or that the expansion is cut off at terms of the order
I/i.. Then the functions U., asymptotic solutions to Eq. 6-2, are of the
form

U. sinn - (6-15)

and hence are identical, with the exception of an irrelevant constant fac-
tor, to the asymptotic form of the Bessel function combination introduced
in Eq. 4-59. In fact exactly the same approximation is being made in each
case.

In the second place consider the upstream flow where w", = const
and v0 ) = bw(0)r/r,. Then

F(r) 3 4b2

+ H---
and the integral

g(r) J -3 4 + Hidr 2b(r 8 -3 (6-16)
2h - t__)_r, _ _ r

The characteristic values are then

nr 2( rb)2 3rt(1- r 2b] (6-17)t - 1h L- I -- ( I8 n , T 2-2 r t ( - 7

and the characteristic functions may be written down explicitly as

r wz [ 2b' / r\ 2  3 r//r)\,_

Note that the radial dependence of the characteristic functions does not
contain any influence of rotation parameter b; the term having coefficient
3/8n'r' arises only in the approximation to the Bessel functions. The up-
stream solid body rotation only affects the axial dependence (exponential
decay) of the solutions. Speaking generally, the influence of an imposed
upstream solid body rotation reduces the rate of decay upstream and
downstream of a disturbance from

(x t x nirZ n rz r 2b 2  
rh_ Th 2]

( t- rh /( r - rh 71 ip r)/J

This is precisely the effect observed when this problem was treated exactly
and may be compared with the results following Eq. 4-34. The solutions
obtained here are, in fact, the correct asymptotic represi itations of those
obtained previously when b is not large.

Now, having been satisfied that the asymptotic solutions to the differ-
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ential equation (Eq. 6-1) agree with exact solutions under circumstances
where they can be compared, the asymptotic method may be applied to
problems where exact solutions can be obtained only numerically. As an
example consider the case of a blade row operating downstream of a guide
vane that imparts a solid body rotation given again by

0O) = wob . (6-19)

where wo is the mean axial velocity. In general, when a homogeneous
fluid of constant stagnation enthalpy flows through a guide vane of this
type, the axial velocity distribution is disturbed although its mean value
remains constant. It will be shown later that far downstream of the guide
vane the axial velocity profile is given with reasonable accuracy as

w O° = w I k2 -1 + (L) -2 (f (6-20)

where actually K2 = b2/2. It is now straightforward to calculate the
functions F(r) and g(r). Substitution into Eq. 64 gives, after a little
manipulation,

F 3 4b2  1
F!r) = r+ [a' k2(r/rh)21 (6-21)

where the quantity a2 has been used to denote

a2 + IV -- [ I + L2 (6-22)1 rr

The function g(r) -- rF(r)dr may also be evaluated explicitly as

(r+ 2 a r 2 a ( r a k2 '

Substitution of this result into Eq. 6-14 gives the characteristic function
in terms of which may be expanded the asymptotic solution for any blade
row far downstream of an entrance guide vane.

The effect on the radial velocity distribution is probably of less interest
than is the effect on rate of decay of the disturbance upstream and down-
stream of the blade row. Referring again to Eq. 6-14, the-modification to

(138



C,6 ' UPSTREAM EFFECTS AND COMPRESSIBILITY

the decay rate depends only upon the value of g(rt). From Eq. 6-23 this
bjecomes directly

g(rt)= -- 8r

3 + b' rh r
g r, rb rt r 2 a 2 - k2

2k 4 a I Tt (6-24)a k k-I
r)f+~~ ~ +k k rnd '- krb' o- In (624

As was observed before, the term - [(1/rb) - (1/rt)] arises from asymp-
totic approximation to the original Bessel functions and is generally un-
important. All of the other terms in Eq. 6-24 are positive since rt/rh > 1.
As a result the argument of the exponential function in Eq. 6-14 is de-
creased; therefore the range of the disturbance upstream and downstream
of the blade row is extended over that without initial rotation or axial
velocity variation. When the axial velocity is constrained to remain uni-
form, that is k = 0 and a' = 1, the result reduces to that given in the
exponent of Eq. 6-18. On the other hand, when the axial velocity alone is
present (i.e. b = 0), the resulting function reduces to the first two terms
of Eq. 6-24.

This particular result given by Eq. 6-23 and 6-24 for the upstream
conditions distorted by a zeroeth order rotational velocity and axial veloc-
ity variation will prove very useful in the construction of approximate
solutions applicable in compressor design procedures.

Effect of compressibility. Compressibility influences that affect the
throughflow directly are usually not of major concern in compressor de-
sign. The reason for this is that, although the Mach number relative to the
rotating blades may be in the transonic regime, the meridional Mach
number, upon which the change from elliptic to hyperbolic equation de-
pends, almost invariably will be in the subsonic region. Thus although
compressibility influences in the throughflow do exist and exert their in-
fluence upon the flow field, it must be kept in mind that some of the most
significant compressibility effects are those associated with the detailed
blade geometry.

To illustrate the compressibility influences without becoming unneces-
sarily enmeshed in detailed calculations, consider a rather over-simplified
example. Suppose that both the zeroeth order axial velocity w(l) and sonic
velocity a (' ) are constant and that the tangential velocity is a solid body
rotation, v0 ) = bw(°)r/rt. This may be realized physically with no diffi-
culty but, it must be admitted, the example differs somewhat from the
circumstances usually encountered downstream of a guide vane. Solutions
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must be obtained to the homogeneous partial differential equation,

Ori + p(r) 8r + q(r)u" + (1 - Ml) 0 (6-25)

where the functions p(r) and q(r) are given by Eq. 3-29 and 3-30. These
functions, as well as the coefficient of 82u")/Oz ' , involve the Mach num-
bers M, = w)°/a(0) and Me v0 )/a(0 ). Clearly the axial Mach number

,f' is a constant and the tangential Mach number may be expressed

a~() 2 r2 Mb
- b = M2b V (6-26)

t02 
r. tf

in terms of the axial Math number and the radius. With these observa-
tions, the coefficients in Eq. 6-25 may 'e written explicitly as

p(r) = r [ +- -+,1.b2 (6-27)

= 1 b2  b
q(r) = + [4 - (4- -y)MI1 + (,y - 1)r Mr 2  (6-28)

If solutions of the differential equation (Eq. 6-25) are sought in the form
U.(r)e±'-, the ordinary differential equation for U,(r) is

r2 + r I + YM,2b2 r) -r (I-M.)(.

-ii --- Mjl - + (' -- )M2- , r U= 0 (6-29)
r 2 4) r2 z

The term involving the first derivatives may be eliminated in the con-
ventional manner; the transformation is simply

U.(r) = V (r)e 4  Q.G) (6-30)

which reduces, of course, to the transformation used previously when the
axial Mach number M., and hence the tangential Mach number Me,
vanish. After substitution of this relation into the differential equa-
tion (Eq. 6-29) and carrying out some simplification, the differential

equation for V,(r) becomes

dlV +1 1 M2).2 - r' (2dr- 2- (1 2 2.K 1 t r4 - (4 +- L- M

V y2M2l
+ rj'f2 (' - 1) 2 - V, = 0 (6-31)

( 140



C,6 UPSTREAM EFFE C''S AND COMPRESSIBILITY

Now calling
- M )x (6-32)

and

--r 4r- +  4 4- (I +} M] +,M.2 (.Y- 1)- M.2 r3

(6-33)
The above differential equation assumes the form

d2V.
dr- + [i2 + F(r)IV. = 0 (6-34)

which is exactly the equation treated previously in the paragraphs follow-
ing Eq. 6-5. The results of that analysis may be carried over and applied
directly to the present problem. It is a simple calculation to show then
that

g()=3 2b- (1-(I+ -) M2(r- h

+6rM [(-1)- - rh) (6-35)

Treating the problem as before, it is clear that the appropriate solutions
of Eq. 6-34 are

V. = sin R.(r- ) g(r)

so that, to the appropriate order of magnitude,

rt- rh[ - nbg (r) (6-36)

which gives

V. = sin \( / + r r --

very much as before. The characteristic functions of the problem may
then be written, taking account of the transformation given by Eq. 6-30,

,i M (,) inT [ (- + [ - g(r) r - rj.
'- e -- sinr,)

(r \r- rh) nr rt -jnt fT 2 r (6-37)
,e I r r-rh[ -'n, Or

The compressibility correction thus enters into the problem in a fairly
complicated manner, affecting both the radial variation and the axial
decay of the disturbance. The axial decay term is worth examining in
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some detail. The decay factor is explicitly

nr z

In r--M2-' '"' \ irl 8

+ 8n----  r - /I/ (6-38)

In the absence of any swirl velocity component, that is where b = 0, the
only correction is the obvious scale contraction in the z direction given by
z//-- M,. This effect tends to crowd all disturbances caused by the
blade into a region close to the blade row. It is simply the Prandtl-Glauert
contraction and is associated with any compressible flow predominantly
in the direction of z and has no peculiar association with the turbomachine
problem. This scale contraction was first applied to the axial turbo-
machine problem by Horlock [131. When a tangential velocity of signifi-
cant magnitude is present, which is invariably the case in any practical
example, other Mach number corrections enter. For example the exten-
sion of the disturbed region, as controlled by the term

may be modified by 15 per cent or more by the compressibility influence
[1 + (3,/8)]M,. Here again the compressibility effect tends to decrease the
extent of the disturbance. Except for rather large values of b (ratio of
tangential to axial velocities) corresponding to severe off-design condi-
tions, the effect of axial scale contraction z/V/ - M , dominates the
other compressibility influences.

It is perhaps appropriate to reiterate the fact that the compressibility
effect discussed here is often not the one of primary interest, to compressor
or turbine design. Local blade channel choking and the accompanying
losses depend strongly upon the local blade geometry and consequently
are properly treated under cascade theory. However, it is of extreme im-
portance to have a good calculation of the axially symmetric throughflow
in order to know gas velocities and flow angles in the neighborhood of
the blades. Thus there exists one compressibility effect in calculating the
throughflow and another in determining the flow about a blade cascade
placed in that throughflow.

There appears to exist one class of problems in which the effects of
compressibility may not be segregated into the two familiar categories
of throughflow and blade characteristics. This example is the transonic
compressor where the blade tips operate at a relative Mach number larger
than unity while the blade roots operate at a subsonic Mach number.
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A recent investigation by McCune [171 for a finite number of blades with
thickness, but without lift, has shown that the detailed flow about blades
at the rotor tip influence in a major way detailed flow about the blades
at the root. This result, one which is not an uncommon one in transonic
flow fields, may be interpreted as meaning that the roots and tips of the
blades may not be considered as independent cascades operating in their
particular flow fields. Since this flow may not be divided, even approxi-
mately, in the manner of which the flow has been treated in the foregoing
work, the transonic compressor represents a strictly three-dimensional
problem that must be treated in complete detail. It should be mentioned
that although these results were obtained for nonturning blades it is prob-
able that similar, though less drastic, results would be obtained for the
turning blade row.

C,7. Approximations to the Throughflow. It is amply clear that
while the results of the preceding sections are ideal for investigating the
throughflow in detail for one given blade row, the general complexity of
the calculations makes it desirable to search out simple and appro.imate
techniques for routine use in turbomachine work, particularly for con-
sideration of multiple blade rows. One approximation [2,31 which has
been used to considerable extent is the so-called radial equilibrium theory.
Here one considers only the flow far upstream and far downstream of a
blade row. At these sections all curvature of the meridional flow has
ceased and the flow is determined by equilibrium between the radial pres-
sure gradient and the centripetal acceleration caused by the motion of
gas elements about the axis of symmetry. The shortcoming of this analy-
sis is that no description is given of how near to the blade row the modifi-
cation of axial velocity takes place. Information of this sort is particularly
necessary when blade rows are spaced closely enough so that the flow
fields of adjacent blade rows overlap. In such cases of mutual interference
an approximation to the flow field is required also. It will prove possible
to approximate the detailed de velopment of the axial velocity profile with
considerable accuracy and with sufficient simplicity for use in the many
complex situations. Finally it will prove possible to approximate the
effects of variation in hub and tip radii as well as the modification due to
compressibility.

Radial equilibrium theory. Of the many possible ways to approach
radial equilibrium theory, one will be chosen here [10] that parallels the
linearized development given in the previous section. Excluding the blade
force normal to the stream surfaces, which need only be considered in
very special cases, the tangential vorticity is given by Eq. 2-43 as

au aw 'P r oh v O(rv) Ta}
Sw - r T#r
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For the present considerations, neglect the entropy variation. Far down-
stream of a single blade row, say at z = -c, the radial velocities vanish

and the variation in stream function 84' - - r -P w8r. Then, since all other
P0

quantities become functions of the radius only, it follows that

dw dh v d ((7-1)
dr - dr r dr

Now if the total enthalpy hO and the angular momentum rv were known
functions of the radius at z = cc, it would be a simple matter to integrate
this relation. Both the enthalpy and the angular momentum are trans-

ported along the stream surfaces and change only upon passage through
the blade row. Each of these quantities consists then of two parts, that
transported from far upstream (z = - - ) and that imparted by the blade
row. Consider for the moment the transport of angular momentum, given
by Eq. 2-25. To the order of e, the order of magnitude of the blade forces,
Eq. 2-25 possesses a zeroeth order part,

w( O(rv()) = 0 (7-2)5z

and a first order part,

u( 0) + W a( ( rf (7-3)ar az

From Eq. 7-2 the initial angular momentum is unchanged along the axial
direction so that the quantity rv(0 ) is known far downstream. The first
order contribution rv(') follows from Eq. 7-3. Integration with respect to z
gives simply

rv,= rfedz -I d(r-)f f u(")dz (7-4)

The first integral is just the angular momentum imparted by the blade
row. Since the tangential force fe vanishes outside of the blade row, it is
sufficient to extend the integration only across the blade chord and

I rfodz= fc/2 rfodz 'rJy(1 (7-5)

for any point downstream of the blade row. This change in angular mo-
mentum across the blade row, rAvO ), will be considered prescribed. The
second integral in Eq. 7-4 represents the perturbation of angular mo-
mentum due to the radial transport of the angular momentum from far
upstream. It is clear, in fact, that f#_. (u(')/w())dz is equal to the radial
distance that a stream surface moves in passing from far upstream to a
point z. The angular momentum is transported along these stream sur-
faces so that the angular momentum which exists at a distance z down-
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stream and radius r is not rv 0( ' but rather

v() (r- f dz

To first order, then, an angular momentum perturbation,

d(rv(')) f u(ddr e wFi z ;

exists due to the radial transport of initial angular momentum. This is
the origin of the last term of Eq. 7-4.

It is not really convenient to express the radial transport in terms of
the radial perturbation velocity u(1 ) inasmuch as the axial perturbation
velocity is the quantity of main interest. The radial and axial velocity
components are related through the continuity equation, but the integral
J". (u(')/wO))dz which is required can be given in terms of w( by some
direct physical reasoning. Since the stream surface bounds a constant
mass flow of fluid between the hub and local radius of the stream surface,
the surface must be displaced to accommodate a variation in mass flow
Sf pw ')2rrdr where w~" is the axial velocity perturbation from the
flow when the stream surface was cylindrical. This mass flow varia-
tion is compensated by decreasing the radius of the stream surface
by an amount - Ar through which the mass flow is, to the first order,
- pw()2TrAr. The mass flow integral and this last expression must be
equal for the stream surface to bound a constant mass flow. Consequently

Ar Mdz - w('Ordr (7-6)f-- (Q rW
( )

With the results of Eq. 7-5 and 7-6 it is possible to express the pertur-
bation angular momentum, far downstream of the blade row, as

r(1) = rAv(t) + Iw d(v('O)) f w(O1 rdr (7-7)

The same consideration as given in Eq. 7-2 et seq. gives a similar expres-
sion for the stagnation enthalpy perturbation far downstream:

1 dh(°) f"
hO = wrAv(1 + I dr f rw ("rdr (7-8)

where the fact. has been used that the enthalpy perturbation A" across
the blade row is equal to wrAv(1), as may be deduced from Eq. 2-36.

Now Eq. 7-7 and 7-8 give the information necessary to express Eq.
7-1, for the axial velocity, in terms of known quantities. It is appropriate
to split this equation into its zeroeth and first order parts. The zeroeth
order part is a trivial statement of the conservation of zeroeth order
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enthalpy, angular momentum, and axial velocity profile along cylindrical
surfaces. The first order part is the one of interest in computing the pertur-
bation in the axial velocity profile. It may be written

W(,).dw,. [ 1 d - d 1 dw{)(7-
+ r' 0o(r - r r drIJ wd1-rdr (7-9)

where now the expressions for rv(') and h( l) may be entered from Eq. 7-7
and 7-8. After some simplification this gives

1 d d /1d /)]f
dr+ (4(O) 2 r dr ] w.

- (- (rv(')) --- (rv(o))(rAv(1 )) (7-10)

where the zeroeth order part of Eq. 7-1 has been employed in the
reduction.

In the particular case that the upstream axial velocity is uniform
and the upstream tangential velocity vanishes, then

dr- = - (rAy(")) (7-11)
dr W(O)dr

which may be integrated directly. As before, it appears that a stationary
blade row produces no distortion, to the first order, when there is no
initial distortion far upstream. Thus the guide vane requires special treat-
ment, and a second order analysis of this particular problem gives

dw( l )  rAv( 1) d (7-12)
d- = i j-)w- (rAv('))dr (7w( 12)d

It is justified to utilize this second order analysis in the case of the en-
trance vane because the angular momentum increment rAv ) across it is
generally much larger than that across other blade rows. Hence the axial
velocity disturbance w(2 ) calculated in this particular case may be suf-
ficiently large that it becomes the npstream distortion w0 1 for succeeding
blade rows.

Returning to the general case of Eq. 7-10, this integro-differential
equation may be converted to a second order differential equation by
differentiation and subsequent elimination of the integral. To do this it is
convenient to denote

1 1 id 2 d (1 dw(o)\1
w ( j [r4w ) dr (0 )) j -dr = h(r) (7-13)

1 1 d d (O)
w - 7\ - w)d (rA ) +-r(r Av)I = k(r) (7-14)
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so that Eq. 7-10 becomes

+ h(r) w(I)rdr = -k(r) (7-15)

The corresponding second order differential equation is

d2w~') d dw~') d cr n(-6
dr' dr [in h(r)] dr + rh(r)w( l) = k(r) kIn k-r) (7-16)

The solution to this must satisfy two conditions. One is simply that the
perturbation axial velocity does not modify the mass throughflow; thus

ft w<"wrdr = 0 (7-17)

The second condition is that the solution satisfy Eq. 7-15, which it did
before differentiation. Since the solution satisfies Eq. 7-16 by definition,
it need in addition satisfy Eq. 7-15 at only one point. It is convenient to
choose this point as r = rt inasmuch as here the integral vanishes. There-
fore it is sufficient that

dr () =-k(r) (7-18)

dr

Eq. 7-16 and the conditions given by Eq. 7-17 and 7-18 complete the
mathematical problem for the throughflow far downstream of an arbi-
trary blade row. It should be noted here that there is no difficulty in
accounting for compressibility in this calculation. The density then enters
through the continuity relation into Eq. 7-6 et seq. and in the condition
of Eq. 7-7.

In general Eq. 7-16 is difficult to integrate and numerical analysis is
required. In fact, for numerical analysis, it is often more convenient to
work with Eq. 7-15. An iterative solution is applicable, for example,
where the first approximation is obtained by integrating -k(r) and neg-
lecting the integral f;hw(Ordr. This first order solution is then used in the
integral to obtain a more accurate second approximation. Some examples
will now help to illustrate the calculation of the throughflow far down-
stream from a blade row.

Flow downstream of an entrance vane. Consider an entrance vane sys--
tern that imparts a solid body rotation

Av(1) = bwo r (7-19)
rt

Upstream of the guide vane the flow is axial witl a uniform velocity
w( ) -- wo. Let the station far downstream of the guide vane be denoted
by subscript 1. Then according to Eq. 7-12

dw (2)  (r

dr - b2wo (7-20)
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Integrating this and satisfying the integral condition given by Eq. 7-17
yields, after a very elementary calculation,

= +\(1 -2 (7-21)

A typical profile corresponding to this calculation is shown in Fig. C,7a.
It should be noted here that the small quantity, denoted e in the

formal perturbation analysis, is the constant b which gives the ratio of

1.0

0,8 . .. -

0.6 -

0.4

-0.4 -0.2 0 0.2 0.4

1 W(2

Fig. C,7a. Axial velocity profile far downstream of

entrance guide vane, v(1' - bw(o)r/rt, rh/rt = 0.6.

the tangential velocity at the blade tip to the undisturbed axial velocity.
In guide vanes this need not be small and may, in fact, be about unity.
In spite of this, the procedure gives a very satisfactory approximation to
the flow far downstream.

Rotor far downstream from entrance vane. With the results that have
been developed it is possible to continue discussion of throughflow in an
axial compressor, considering the blade rows to be spaced sufficiently far
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apart that the development of each axial velocity profile is complete
before the next blade row is encountered. Consider the rotor, then, which
imparts a vortex rotation

r.
=awo (7-22)

and hence imparts the same enthalpy rise at all radii. So far as the rotor is
concerned the upstream conditions are not uniform but have a zeroeth
order axial and tangential velocity distortion,

v?= bw° - (7-23)

w = w  ( 1+(\) -2)])

A word of explanation should be added here inasmuch as these were con-
sidered perturbations in the guide vane calculation and now appear as
zeroeth order quantities. The fact is that the tangential velocity disturb-
ance is not strictly a perturbation, although it was treated as such to the
second order, and may not be omitted from calculations of the ensuing
stages. The axial velocity disturbance is generally of much smaller magni-
tude, depending upon the hub ratio, and it may be neglected at appropri-
ate steps of the work. Then according to Eq. 7-13 and 7-14 the functions
h(r) and k(r) become

h(r) = -7- 1+ \+ -2 (7-24)
rab 2 rti

k(r) - 2abw' +1 ( I - - 2 (7-25)

In these expressions the axial velocity disturbance far upstream of the
rotor is characterized by the presence of the term

+ (r-"' ()

Its influence is usually a small one, becoming less significant as the hub
ratio rh/rs approaches unity. Neglecting these terms, Eq. 7-16 for the
axial velocity perturbation far downstream of the rotor blade row may be
written

21 w + d ("' + k- 0 (7-26)
dr + r dr \ rt/

where the subscript 2 has been employed to denote conditions downstream
of the rotor. The solution consists of Bessel functions of order zero, and
may be written as the linear combination

W) = AJo 2b ) + BYo 2br) (7-27)
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0.8

0.6

o .°I, .... ...

-0.5 0 0.5 1.0

0 W(O)

Fig. C,7b. Axial velocity far downstream of rotor
blade row, v0) = aw(W)rt/r, rh/rt = 0.6.

where the constants are to be determined from the conditions given by
Eq. 7-17 and 7-18. Direct substitution gives, for Eq. 7-18,

AJI(2b) + BYI(2b) = woa (7-28)

On the other hand, the integral condition (Eq. 7-17) gives

A - . J, (2b)] + B [Y,(2b) -- Yj (2b L)] (7-29)

Some calculation then gives the solution for the axial velocity perturba-
tion downstream of the rotor, where the quantity 2b/rt is denoted K

YI(Krh) - r1 Yl(Krt) J(r) + JI(Krh) - LJI(Krt)] YO(Kr)W'11) = awo rh II' r

,
= aw0  Jd(Krt) Yx(Krh) - J(r) Yj(Krt)

(7-30)
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This particular distortion is shown in Fig. C,7b. The complete axial velec-
ity profile downstream of the rotor is made up of the uniform axial veloc-
ity w0, the disturbance w12) (Eq. 7-21) caused by the inlet guide vane, and
the additional distortion (Eq. 7-30) caused by the rotor.

Additional rotors and stators. In the normal multistage turbomachine
the succeeding rotor and stator blade rows, respectively, add and subtract
rotational velocity components of about the same magnitude. It will be
assumed in the present example that tangential velocity changes across
rotor and stator blade rows are equal and opposite and tLat the tangential
velocity change induced always has the vortex distribution. Thus across

. k-i k k+I

Guide vane Rotor Stotor
Fig. C,7c. Schematic diagram of multistage axial

compressor showing blade row numbering.

the stator following the rotor discussed above the change in tangential
velocity is

Av 1  = -awo- (7-31)

and since the changes in axial and tangential velocity across the first
rotor are definitely of first order, the axial and tangential velocities "far
upstream" of the first stator are identical with those "far upstream" of
the first rotor. Consequently the axial velocity distortion across the first
stator is exactly the negative of that across the first rotor, that is

W 1) = - w21) (7-32)

It is simple to see, then, what the complete axial velocity profile becomes
downstream of each blade row of the axial compressor, a schematic dia-
gram of which is shown in Fig. C,7c. Upstream of the guide vane the
axial velocity is uniform and equal to wo. Between the guide vane and
rotor, which are supposed here to be far apart as compared with the dis-
tance required for the change in axial velocity, to take place, the axial
velocity is just

wI(r) = wo I + [ + \(3
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Between the following rotor and guide vane, the total axial velocity is

(r) I + L 1 + 22l

.;r-' =+ J(Kr) J(Kft)1
+ a rh I,jJ)Yi(r) I rlh-)

+0 Jl(Kr)Y(crh) - J(crk)Y(Kr,)

(7-34)

where the rotor has introduced the additional vortex motion indicated by
Eq. 7-22. Downstream of the ensuing stator row the vortex motion is re-
moved and the axial velocity profile reverts to that downstream of the
guide vane,

WI(r) = wl(r) (7-35)

Similarly, downstream of the second rotor, the axial velocity profile be-

comes exactly what it was downstream of the first rotor, that is

w4(r) = W2(r) (7-36)

The velocity profile continues to oscillate in this manner, attaining one
definite axial velocity profile downstream of each rotor, a different one
downstream of each stator.

Development of axial velocity profiles. The basic deficiency of the
radial equilibrium analysis given in the preceding subarticle is that,
although it gives the equilibrium axial velocity profiles far upstream and
downstream of the blade row, it fails to describe the manner in which
this change takes place. There is no clue in radial equilibrium theory as
to whether the transition takes place very close to the blade row in ques-
tion or whether it is spread out over many blade chord lengths. This
question becomes of extreme importance in a multistage compressor
where the change in axial velocity caused by one blade row may not be
complete before the next blade row is reached. Hence the radial equi-
librium velocity profiles are never actually attained and the entrance and
exit angles to the blade row must be designed to axial velocity profiles
that depend upon the flow fields of the neighboring blade rows. This phe-
nomenon is known as the mutual interference between blade rows.

The methods developed for detailed calculation of the flow field
about a blade row of definite chord or an actuator disk may be employed
to study the development of the axial velocity profile. The general
complexity of the method prohibits its application to multistage com-
pressor prblems and actually makes an undesirable amount of labor
out of the routine design of a single blade row. Therefore some method for
approximating the development of the axial velocity profile is needed,
particularly for use in multistage turbomachines (9,i0,I1,121.
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Toward this end it should be remembered that, so far as the actuator
disk is concerned, the axial velocity profile is known at three stations.
Far upstream of the blade row the perturbations associated with the
blade row in question vanish. Far downstream of the blade row, the
axial velocity perturbation is calculated from the radial equilibrium
theory according to Eq. 7-11, 7-12, or 7-16. From detailed calculations
carried out previously, in fact from the observation that the radial veloc-
ity is symmetrical about the actuator disk, it follows that the change in
axial velocity is half completed at the plane of the actuator disk. If wc")(r)

is the axial velocity far upstream of the blade row and w(l)(r, z) is the
perturbation axial velocity, it is appropriate to denote w)(r, -c) the per-
turbation axial velocity far downstream of the blade row calculated from
radial equilibrium theory. Hence, making the origin z = 0 in the plane
of the actuator disk and taking w0(r, co) as being known from radial

equilibrium theory, the axial velocity at z = - is

w(O) (r) (7-37)

at z = 0
wco)(r) + Jw('0)(r, w) (7-38)

and at z -
wM0)(r) + w()(r, ) (7-39)

Now it is clear upon inspection of the complete solution for axial

velocity profile, such as that given in Eq. 4-27 and 4-28, that each Fourier-
Bessel component of the axial velocity disturbance decays upstream of
the actuator disk by an exponential factor e- ' - where K, is the appropri-
ate characteristic value for the Fourier-Bessel component considered. For
an approximation it is sufficiently accurate to assume that all components
decay at the same rate or, in other words, that the entire axial velocity

5

perturbation decays as some exponential function e t-"h when z < 0.
Referring again to Eq. 7-37 and 7-38 it is appropriate to write

2

w = w( 0)(r) + 1w(')(r, 00)e r,-r (7-40)

which satisfies the requirement at both the actuator disk and far up-

stream. For the remainder of the axial velocity profile to develop in a
manner symmetrical with the development upstream, it is necessary that

w = w(°) + w(')(r, -c)(I - -e F,-h) (7-41)

This approximation clearly satisfies both conditions given by Eq. 7-38

and 7-39.
The problem yet remains to choose the constant X in such a manner

as to make this approximation a good one. Clearly, if the perturbation

(153 )



C THREE-DIMENSIONAL FLOW IN TURBOMACHINES

axial velocity w(l)(r, o) consisted of only the first Fourier-Bessel term in
the expansion (cf. Eq. 4-27 and 4-28) the value of X would be very nearly V
since the asymptotic value of Xj = 7r/(rt - rh). Although axial velocity
disturbances encountered in practice invariably include many more than
the first harmonic component, the first harmonic does constitute a large
portion of the disturbance. Consequently, for all but the region very near
the actuator disk, the first harmonic component dominates the flow pat-
tern and X = ir is a very reasonable value to use. Calculations were carried
out by Marble [101 to determine what value of X provided the least mean
square error from an exact solution. For a blade row imparting a solid
body rotation it was found that this optimum X had the value 3.25 for a
hub ratio rh/rt = 0.5 and rapidly approached the value ir as rh/rt increased
toward unity. Hence in consideration of all other approximations con-
nected with the throughflow theory, it seems completely adequate to
choose X = r, or in general the first characteristic value.

Using this exponential approximation to the detailed development of
the throughflow it is a simple matter to write down the solution for flow
through an entrance vane imparting a solid body rotation. Referring to
the example following Eq. 7-22 for which radial equilibrium flow was
computed,

WW0 (r) = w(0 1 and wM'(r, -o) = _o~[ () - 2 (L)2]

If again this entrance vane is represented by an actuator disk located at
z = 0, then the exponential approximation to the axial velocity field
becomes

w(r,z) =wo I [ ±(\+) - 2 h)' e'J Z 0 (7-42)

and

w(r,z) = wo 1 + () - 2 1-e ) (7-43)

The development of this velocity profile is shown in Fig. C,7d for various
distances upstream and downstream of the actuator disk. Comparison
with the exact (linearized) solution indicates negligible error of this ap-
proximation except in the immediate vicinity of the actuator disk, that is
for jz/(rt - rb)l < 0.1. The whole actuator disk concept breaks down in
this region anyway because this distance is usually well within the blade
chord. Consequently the exponential approximation, Eq. 7-42 and 7-43,
may be used wherever the actuator disk itself is valid.

The general utility of the exponential approximation may be extended
by superposition of actuator disk solutions, using exponential approxi-
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mation, to make up a blade of finite chord. Actually this is an unneces-
sarily complex procedure because a quite adequate approximation to a
blade row of finite chord may be obtained with two, or at most three,
atvtuator disks situated at appropriate axial positions along the blade
chord.

Using the exponential approximation it is possible to discuss the
problems of mutual interference between blade rows in a multistage axial

r 0.1 -0.1 _____ ___
0C.-I 0. 0.5 -5

rt-- rh

0.8 -- - --.. . ... . .

0.6--1
IsI

0.4-

C-0.4 --0.2 0 0.2 0.4

Fig. C,7d. Development of axial velocity profile upstream and downstream of
entrance guide vane, calculated using exponential approximation, 01 - bw(')r/rt,
ro/r - 0.60.

compressor. Consider, for example, the multistage compressor for which
the radial equilibrium axial velocity profiles were determined in the work
following Eq. 7-19. Let the individual blade rows be separated by a dis-
tance 8 so that the entrance guide vane is represented by an actuator disk
at z = 0, the first rotor by an actuator disk at z =8, the first stator at
z= 23, and so on, as indicated in Fig. C,7c. The change in axial velocity

imposed by each of these blade rows is known and, hence, to determine
the complete flow field it is merely necessary to superpose the effects of
individual blade rows in the appropriate manner.

It is convenient to denote the radial equilibrium axial velocity pertur-
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bation across the guide vane by

w) w  + - 2 (744)

and the magnitude of radial equilibrium axial velocity perturbation
across each of the other rows by
AW(1) =--

Ii(Krh) - YIrl)I .JO(Kr) + [J(Krh) LIJI(icrt)i Yo(Kr)I
woa rt ___ I ___

t~o~ - - -J(jcrt) YI(irh) - J(Krb) YI(cr,)

(745)

The perturbation given by Eq. 7-45 will appear with a positive sign for a
rotor blade row and with a negative sign for a stator. The perturbation
axial velocity flow field for the guide vane is then

, '(2). • I -rt-rh

i• et z ;5 O0
Azw(r, z) = -* i (7-46)

lAw.'(1( -e z ?= 0)

while that for the first rotor is just

A~wr, Z) 't . " (7-47)

(Aw()(1 - e k,-rh z 2-

The first stator imparts a disturbance which is the negative of that due
to the first rotor and is displaced a distance 5 farther downstream. A
similar procedure will give the flow field for any of the subsequent rotors
and stators. In general the perturbation associated with any of the blade
rows downstream of the stator may be written

[~~ z (n -I(--1)"Aw( 1)'.11er rt- rh z z (n -1) 6
Aw(r, z) = _[- (n - 1)61 (7-48)

1(-l)nAW(t)(1 - e rk,-1h J) z__ (n -1)81

It is now simply a matter of summation over the perturbations given
by Eq. 746 and 7-48 to find the axial velocity field at any point of the
multistage axial turbomachine. Suppose that there are a total of N stages
and hence N rotors and N stators following an entrance guide vane. The
various blade rows are then numbered from 1 through 2N + 1. If the
axial velocity distribution is desired in the section between the kth and
(k + 1)th blade rows, it may be written down using the appropriate solu-
tions upstream and downstream of this section. When k is unity or larger,
the complete axial velocity may be written
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W(r, z) - Wo + aw "(1 -
rk r -( - W)s 2K+ 1 F - ,- i

+ 2 (-+1)Aw(')(l [-LR-' d] + 2 (-2)w(') t1)8
%-2 k-+i

k8 5 z _5 (k + 1)8 (7-49)

For the velocity distribution upstream of the guide vane, i.e. the particu-
lar circumstance where k = 0, the solution may be written

w(r, z) = wo + Aw . 7 7
b

+ 1 S -) ~ " ,-', " z_
+ z( 0 (7-50)

n-2

Using Eq. 749 and 7-50 the flow field through the entire turbomachine
may be found by computing the individual sections corresponding to
particular values of k. It will be of particular interest to determine the
behavior of the flow field in the vicinity of the first few blade rows to
observe just how many stages are involved in the transition region until a
steady repeating flow pattern is achieved. Then it will be of interest to
calculate what this steady repeating pattern is for a stage deeply embedded
in the compressor. From this latter it will be possible to observe the
effects of mutual interference of blade rows.

The transition from undisturbed flow far upstream to the periodic
pattern developed through the stages far aft of the guide vane is observed
most easily by studying the shape of a stream surface which lies at the
middle of the annulus far upstream of the guide vane. The radial velocity
distribution is required to compute streamline shape, for the local slope
is just u(')(r, z)/Wo where u(')(r, z) is the perturbation radial velocity.
Since the continuity equation relates the radial and axial velocities as

I c)ru aw
r - r- TZ

it is an elementary integration to obtain the radial velocity distribution
from Eq. 7-49 and 7-50. In this manner it follows that, to the accuracy

of the exponential approximation,
21V+1 _..-,, a~

u(r, z) - U=ae I rt- (7-51)
1

where Aftu., is calculated from the Aw (l) as

2 ,,jw )(r)rdr (7-52)
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Now since u(r, z)/wo is the flow angle, the shape of the desired stream
surface is easily constructed from Eq. 7-51 either graphically or by direct
integration with respect to z. The values of A~w("(r) are known and the
result is shown in Fig. C,7e. The scale of the vertical motion of the
streamline is grossly magnified to show the effects. It is seen that the
periodic flow is established surprisingly quickly, essentially by the time
the second rotor is reached. The transient state caused by the inlet vanes
and the first rotor is of very short duration, partly because the distortion
due to the rotor is of the same sense as that due to the guide vanes and
assists in completing rapidly the distortion due to the guide vanes.

1, 2 3 4 5 6 ,7, 8

Guide vane Rotor Stotor

Fig. C,7e. Deflection of middle stream surface near entrance
of multistage axial compressor, vertical scale magnified.

It may be deduced from these results that most of the blade rows in a
multistage turbomachine are deeply imbedded, in the sense that they do
not feel the influence of the compressor ends. Consequently the second
point mentioned above, the steady repeating pattern for a deeply em-
bedded stage, takes on considerable significance. To investigate this flow
pattern it is convenient to transform the axis to the plane of. the kth
blade row, that is to introduce a variable r such that z - + (k - 1)6.
Eq. 7-49 then becomes

[+-m 1
w(r, ) = wn + Aw,'1(1 - e- r-r. )

+ E -W(( (-1 J

n-2

2N-1

+ "2(-1)"Aw()e4 -- ] (7-53)
k+1

In anticipation of making an infinite number of blade rows both upstream
and downstream of the case in question, it is appropriate to introduce
new indices for each of the two sums in Eq. 7-53. In the sum ., call

k k-n and in the sum k+ call j =n - k - 1, then with a little
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rearrangement,

w(r, wo) = w0 + Aw.(',(1 - Je+ [1 + (-1)"lAwO

k-2 2N-k,

+ (-))k-1 A (M (-l)ie-1 + eyTe '',,  (-l)ie-a) (7-54)
0 0

where the factor J[l + (-1)k] is unity when k is even (the section under
consideration is just downstream of a rotor) or zero when k is odd (the
section is just downstream of a stator). Now if the stage is deeply em-
bedded, one may consider that there are an infinite number of similar
stages upstream and downstream of the section being investigated. Thus
both k and 2N - k approach m so that the coefficient of tw, becomes
unity and both series may be summed simply. After a little manipulation
the result may be written

w(r, = wo + awl." + 2 -

rt r/

(7-55)

The flow thus consists of a mean velocity given by w(°) + Aw,2) + (Aw(')/2)
and a component,

aw(,) cosh r 'Il--a)

cosh- - (7-56)
cosh v -L

(rt - rh)

which fluctuates along the z axis. The mean velocity profile is given by
the sum of the average velocity wo, the distortion Awl ) caused by the
guide vanes and half of the distortion produced by the next rotor. The
fluctuating part reaches its maximum value halfway between the two
blade rows, that is where = .15. Here it is equal to

), AW[1 I11 (7-57)

I(r rh/J
Clearly then, if the blade spacing becomes very large,

cosh 6 r rh

and the fluctuation in axial velocity profile is just

1), AWO(7-58)
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This is, of course, just the result of simple radial equilibrium theory
which, as already pointed out, does hold exactly if the blade rows are
spaced infinitely far apart along the z axis.

When the blade rows are not spaced a large distance apart, the flow
fields of adjacent blade rows tend to cancel each other to a certain extent,
that is they interfere. The amplitude of the fluctuation in axial velocity
profile from one section to the next is reduced below that given by radial
equilibrium theory, Eq. 7-58, by just the factor

1- (7-59)
cosh W ( 6 )

appearing in Eq. 7-57. The second term of Eq. 7-59 is designated the

1.2

04-

aU 0 .8 .. ... . .

Q) 0.,4

0 0.5 1.0 1.5 2.0 2.5 30

Blade spacing ratio 8(r, - rh)

Fig. C,7f. Blade interference factor as a function of blade spacing ratio, 6/(r, -

mutual interference factor and gives the fraction of the radial equilib-
rium change of axial velocity profile which is prohibited by interference
of the blade rows in a section of a multistage compressor made up of
identical stages. The mutual interference factor depends only upon the
blade spacing ratio S/(rt - rh), the ratio of blade spacing to blade length.
A plot of this factor is shown in Fig. C,7f. It appears then that when the
blade spacing is large, of the order of twice as large as the blade length,
practically the whole radial equilibrium shift takes place after one blade
row, before the next one is encountered. If the blade spacing is small,
say about half of the blade length or less as in the early stages of axial
compressors, then only about one third of the radial equilibrium may
take place before the field of the next blade row takes effect. In view of
the rapidity with which this oscillating pattern develops, as discussed in
connection with Fig. C,7e, this mutual interference factor may be used
with considerable assurance beyond the fourth blade row.
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Effects of upstream conditions and compressibility. A few words may
well be added here concerning some factors which were found to affect
the eyponential coefficients in the asymptotic expansions used to investi-
gate large upstream tangential and axial velocity distortions and also
compressible throughflow. In the first place it may be recalled that in-
vestigation following Eq. 4-31 showed that when the flow upstream of a
blade row possessed a strong solid body rotation given by v(°) = bwor/rt,
the exponential decay of this perturbation was given by e- 1 ' 1, cf. Eq.
4-34 and 4-35, where

= (\rt - rj] \~ 2, /(7-60)

For use in the exponential approximation under these circumstances, the
ppropriate factor in the exponent should not be simply w, but rather

r 1 -( _) '(1 -_rh ' (7-61)

In cases of practical importance, such as mutual interference in the axial
compressor discussed in the previous section, the value of the radical
may be as low as 0.80. Reference to Eq. 7-59 shows that the influence of
upstream solid body rotation tends to reduce the effective blade spacing 8,
in the present example to 0.80 of its geometrical value. The physical effect
is to increase the interference factor, as may be seen from Fig. C,7f, and
consequently to reduce the axial velocity distortion from one blade row
to another.

in general the effects of upstream tangential velocity and axial veloc-
ity distortion were treated by the method of asymptotic solution of the
differential equation. The appropriate exponential factors were deter-
mined explicitly in Eq. 6-13. Thus when the upstream axial velocity and
tangential velocity are given as w(0)(r) and v(0 )(r) respectively, the appro-
priate factor in the exponent is

S rt -rh frt [ 200) d(rv(0)) _-r d fdw(O)\ '2] d (7-62)21r rb [r-w(O)2 dr w(_) dr \- rdr 4r)

instead of simply v. Since this expression is only a constant to be em-
ployed in the exponential approximation, the integral may be evaluated
numerically without difficulty.

The effect of compressibility has been treated also by means of
asymptotic methods in a previous section but not in a completely general
manner. For the case of a solid body rotation v10 ) = bwor/r, and a uniform
axial velocity w(0) = wo = const, the asymptotic solution for the charac-
teristic functions was carried out in the development following Eq. 6-25.
In particular it was found that the decay factor, the exponential part of
the characteristic functions, was given in Eq. 6-38. From this then it is
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clear that the appropriate constant to employ in the exponential approxi-
mation to the throughflow is not exactly ir, but 4

2b2Q rh 8

b4 M2 [( 1 ~y2] )(

(7-63)
This is simply a number for any set of operating conditions and reduces
to the former value for incompressible flow with upstream solid body
rotation when the Mach numbers approach zero. So far as compressi-
bility is concerned, the strongest effect is usually the factor \/1 - M. in
the denominator. As pointed out previously this is simply the Prandtl-
Glauert correction associated with the axial velocity. Effects of the ro-
tational velocities appear only in the other terms of the numerator. The
predominant effect of compressibility is to increase the constant in the
exponential approxima. on, opposite the influence of the solid body ro-
tation far upstream. With reference to the multistage compressor dis-
cussed previously, the compressibility correction tends to increase the
effective blade row spacing along the axis. For ordinarily encountered
axial velocities the compressibility correction may increase the value of
the appropriate exponential constant from ir to 1.15,r. It is also worth
noting that in a conventional compressor the two main corrections to the
exponential constant, the solid body rotation imparted by the guide vane
and the compressibility correction, tend very nearly to compensate each
other and make the appropriate constant r.

Variable hub and tip radii. It has recently been pointed out to the
author by G. Oates that it is possible to develop an exponential approxi-
mation for the effect of variable hub and tip radii, the exact solution for
which was discussed previously in detail. It has not as yet been devel-
oped to the extent of exponential approximation for perturbations due to
blade rows and has not at all found its way into practice. Consequently
the discussion here will be limited to the example of hub radius variations
which was worked out in detail following Eq. 5-11. Take the amplitude
of the sine wave to be arh so that the hub radius is rh upstream of the
contraction and rh(l + 2 a) downstream. If now the axial velocity profile
is uniform and the tangential velocity vanishes (or has the distribution
of a vortex) far upstream of the contraction, then the axial velocity pro-
file is certainly uniform far downstream of the profile. By continuity, the
uniform perturbation on the axial velocity far downstream is

w(' (r, -) = -r -- (7-64)

and according to Eq. 5-23, it is clear then that
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2r~ _ 10l ~ K, ~ it (ir) Ko (w)
; - TL (, K, l, )1 K(

+ Lh 2 - e-.. coshi," Jo(,r) Yl(.r,) - J(Kcr) Yo(,.r)
I21Ti. (ir/21)2 + dJo(,~r1) Y 1r.,~rt) -Jj(K,rt) Yo(xKlrh)1

1 [- rt[J(K.rh) Yo(Krt) - Jo(Krt)Y,(,.rh)j

(7-65)

In particular the radial dependence of the two functions on the right-
hand side of Eq. 7-65 cancels to give a constant result. Employing this
relation, it appears upon writing Eq. 5-22 at the point z = 0 in the center
of the converging section, that

w( 1)(r, 0) r 2 a (
w
€ °  

- r2' (7-66)

and consequently the axial velocity is uniform here also. This result could
also have been obtained directly by a symmetry argument with respect to
z= 0.

The exponential approximation in this case consists in noting that,
in addition to the above observations, the terms of principal importance in
the summations are those corresponding to the first characteristic value,

K, = ,r/(r, - rh). Now denoting

I(') K, (rrt I -(!2 )

T(r). -r (7-67)-, , !'2) (-, ( ))
The axial velocity distribution may be denoted in the following approxi-
mate form:

w(1)(r, z) + T(r) cosh r 1 1 'hw (rt/rh))2 1 2 T - rh

z _ 1 (7-68)

(r z) 1 1 1 rt-rh Sib Zr - z
O a[(r) 2 + 2 T(r) (e 21)--sinr

+ (/r2 - +sin r z - 1z <1 (7-69)[ ]( ---)-
w(l)(r, z) 2 + -I cosh r - e r-t h

w -  (r,/rh)'- 2 rt- rh

+ 2a : z (7-70)
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Since T(r) can be evaluated directly, this approximation for the axial
velocity perturbation is very simple to use. Its accuracy is also adequate
for any but extremely unusual needs.

The axial velocity profiles have been calculated at several axial posi-
tions using the exponential approximation given above, and the results

"cz ,, /// ////

Tz itrr i

Z IT1" " 7r

C--- rt - o r 3 4 6
1,12

I i - . _

0.8-f 2 --

o. - - I --;
0.6 - - - -

.4

-I I, __

0.2 0 ,7
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I W (1'

2ra W °7

Fig. C,7g. Approximate axial velocity profiles
caused by variation in hub radius, rh/rt - 0.6.

are shown in Fig. C,7g. Comparison with the exact solution suggests that
they are more reliable than a significant number of terms in the Fourier-
Bessel expansion and, of course, incomparably easier to calculate. Com-
bined with the axial velocity distortion associated with an actuator disk,
the results give a more adequate description of the throughflow for a
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blade row in channel of varying cross section. It is obvious that a similar
approximation may be developed for a variable tip radius.

In summary it may be said that the exponential approximation com-
bined with a radial equilibrium theory provides all of the throughflow
information and the required accuracy for turbomachine technology.
While some specific problems may require the detailed exact treat-
ment, it is probable that, when these problems have been investigated
thoroughly, they too will permit approximate treatment similar to the
exponential approximation.
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SECTION D

EXPERIMENTAL TECHNIQUES

JOHN R. ERWIN

D,1. Introduction. The design of an aircraft gas turbine component,
whether air inlet, compressor, diffuser, combustor, turbine, afterburner,
exhaust nozzle, or silencer, is concerned with the compressible three-
dimensional flow of viscous, turbulent gases through passages or rows of
closely spaced blades having high aerodynamic and structural loading.
The theoretical analysis of gas turbine element detail has not yet pro-
gressed to a position permitting complete design from values obtained
solely by calculation. Compressor and turbine design will probably be
based largely on experimental results for many years because of thp
differences in behavior between real fluids and the ideal, nonviscous,
incompressible fluids more readily dealt with theoretically.

From the standpoint of developing high performance nower plants,
the gas turbine has an advantage over the piston engine in that the intake,
compression, combustion, expansion, and exhaust phases of the thermal
cycle are primarily steady flow processes that occur in component parts:
the inlet, compressor, combustor, turbine, afterburner, and exhaust noz-
zle, which can be separated for individual study. The compressor and
turbine components can be separated into single-stage units for more
thorough instrumentation and tests over a wider range of the many varia-
bles than is possible with complete components. These single stages can
be combined into components with a degree of success that will improve
as a more complete understanding of the flow processes is achieved. Axial
flow compressor and turbine blade sections can be treated two-dimen-
sionally if the annular blade rows are "unwrapped" into linear cascades.

For the purpose of illustration, the methods of attacking the design
problem experimentally can be separated into two approaches. The first
approach is that used perforce in the design of early engines: to build
the best compressor or turbine or complete engine that one can from
existing knowledge, and then attempt to determine from test results
where faults occurred and wh).t remedy to use for improvement. From
a large number of tests, dependent both on fortune and the quality of
engineering judgment brought to bear on the problem, a satisfactory de-
sign procedure can be obtained in this manner. This can be said: Because
this approach was used, engines were developed in a much shorter period
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of time than had a more cautious procedure been followed. Whether the
further evolution of the gas turbine would advance most rapidly through
this attack alone is not clearly answerable, but it seems unlikely.

The second experimental approach is that of isolating effects to per-
mit a close study of separate phenomena in the hope of understanding
each individually, and then to combine the separate simpler flows to help
determine proper design for the complex flows which occur in turbo-
machines. In this approach one proceeds from the study of diffusers and
nozzles to duct bends, two-dimensional cascades, three-dimensional cas-
cades, single-stage components, several-stage and multistage compressors
and turbines-first at low and then at high speeds. This would seem to be
a process that would never reach the desired conclusion because the earlier
work on which later phases were based would become obsolete before the
completion of the process. However, several or most of these phases can,
and should, proceed simultaneously, for the information obtained from
one source can be a direct aid in understanding results obtained from the
other sources. In addition, a number of successful multistage axial flow
compressors have been designed solely on information obtained in low
speed two-dimensional cascades. In practice, of course, both engine and
component approaches are employed, in conjunction with theoretical
analysis, with diffeiing emphasis by the various groups engaged in gas
turbine design.

The performance of gas turbines can be determined by tests of models
of the components or by testing full scale components separately. The
advantages of model testing are many: individual effects can be isolated;
less power is required to drive compressors or is produced by turbines;
smaller compressed air and exhausting facilities can be used; high com-
bustor and turbine temperatures can be avoided so that simpler apparatus
and instrumentation are permissible; more readily workable materials
may be used; and rotational speeds, and hence stresses, can be reduced.
It would appear that model testing would be much quicker and a great
deal less expensive than full scale component or engine testing. While
this is generally true for low speed tests of simple models, experience has
shown that it is not necessarily cheaper and usually takes longer to build
and test a model axial flow compressor than a full scale compressor for
an engine. This result has been due more to the emphasis and priority
placed by management on directly salable engines rather than to technical
differences of construction.

In order that model tests be valid, significant similarity coefficients
must have the same value in the model as in the full scale component.
The model must be geometrically similar to the actual turbine or com-
pressor. The flow coefficient, Mach number, Reynolds number, and the
ratio of specific heats should be the same for model and full scale working
fluids. If the model is geometrically similar and if the similarity coefli-
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cients have the same value as in the full scale installation, the quantities
and qualities defining gas turbine performance can be accurately deter-
mined. By disregarding one or more of the necessary conditions, the test
equipment required and the difficulty of making tests can be greatly re-
duced; for example, if Mach number similarity is disregarded, inexpensive
cascades or stage rigs can be used which greatly simplify model testing.
Good judgment must be exercised in extrapolating such results to the
conditions of the application, however.

The conditions under which tests are conducted can influence the
performance of the engine or component to be studied, and the type of
instrumentation employed can determine the accuracy of measurements.
A discussion of the methods of obtaining such results is therefore pertinent
to this volume.

D,2. Elements of Experimental Installations. Installations for
studying gas turbines or their components are usually designed to permit
tests under steady state conditions. This is the usual operating condition
for which the components are designed, even though engines must accel-
erate and though the flow through the compressor and turbine blades,
which experience rapidly moving wakes of upstream blades, might more
properly be considered unsteady. The flow through air intakes during
supersonic flight or during flight maneuvers, through diffusers and com-
bustion chambers following compressors or turbines, or through exhaust
nozzles and silencers, is not steady. The unsteady flow case is difficult to
treat either theoretically or experimentally, although considerable prog-
ress has been made in the study of rotating stall. More emphasis will
certainly be placed on the study of unsteady phenomena in the future.
At present, satisfactory results are being obtained by designing to mini-
mize intermittent effects in gas turbines and assuming that the flow obeys
an averaging process.

Settling chamber and intake installations intended to permit the test-
ing of aircraft gas turbines or their components are usually designed to
produce uniform flows entering the element under study. To accomplish
this, settling chambers of cross-sectional area 10 to 20 times as large as
the flow area of the unit under test are used. The plenum chamber usu-
ally contains several screens to reduce velocity variations followed by a
honeycomb straightener to remove rotational component of the flow.
Because the velocity is low, total temperature and pressure measurements
can be made accurately so that surveys of the flow are unnecessary. The
transition from the plenum to the test section is accomplished with bell-
mouths or fairings having large radii of curvature to prevent or minimize
local high velocity regions and to insure uniform flow into the unit to be
studied In [11, recommended settling chamber and intake configurations
are presented. These configurations can be used directly in annular cas-
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cade and single- ard multistage turbine and engine test apparatus. The
principles apply to linear cascade, duct, and diffuser tests.

For axial flow compressors, the following general setup is recom-
mended in [1] to be applied to that type, insofar as is practical.

Inlet. An inlet settling chamber designed to insure smooth entry of
the air into the compressor should be placed immediately ahead of the
compressor. In order to secure the desired uniformity of flow, one or more
screens and a honeycomb straightener are placed within the depression
tank. A bell-mouthed inlet should be provided within the plenum cham-
ber for the compressor. A typical settling chamber is illustrated in Fig.
D,2a.

E

C 4)

C 2 Honeycomb straightener

SScreens z
Diffusor 0.

--- Air flow

-D - Logging (2 in of felt or equivalent)
2D

Bell-mouthed inlet

Fig. 1),2a. Setup of inlet depression tank for axial flow compressor U I.

Outlet. The compressor may be tested either Aith or without a dif-
fuser. The discharge collector should be designed so that the static pres-
sure variations around the circumference at the outlet measuring station
are less than 5 per cent of the mean dynamic pressure and so that the
collector and ducting losses are low enough to permit the desired oper-
ating range of pressure ratios and flows. In [21, a series of tests were made
on the collector illustrated in Fig. D,2b in which six different outlet con-
figurations were used. By using outlet pipes with different diameters and
by using either one or two pipes, the ratio of outlet-pipe cross-sectional
area to the collector-inlet cross-sectional area was varied from 0.52 to
3.12. From these tests it was determined that the number of outlet pipes
apparently had little effect on the static pressure distribution at the col-
lector inlet. The total pressure loss was smaller with one outlet pipe than
with two, for the same total flow area, except for the smallest outlet con-
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figuration investigated; the principal total pressure losses occurred at the
collector inlet because of the sudden expansion in flow area.

Air facilities. Whenever possible, altitude-exhaust and dry refriger-
ated or heated inlet air should be provided to obtain a wide range of inlet
pressures and temperatures, in order to simulate the conditions encoun-
tered in high altitude flight. At altitude, the Mach number or corrected
speed and Reynolds number of an engine are different than in sea level
flight, and significant changes in engine performance can occur. At ex-
treme altitudes, satisfactory combustion is not easily obtained, particu-
larly if altitude starting is required. The necessary information is difficult

To altitude exhaust system

Station 5 - Ou tiet 0.5pp 1
d~~~ ~iameterStto2 -'.

6 diameters Station 2 Detail of baffle

Outer cylinder tation

Stotion 4 Inner
Station 3 7

Rear plate

Dirfo, , 18",---
-Jr" -2.75"

- r q i-* : Baffle

7 ront plate Nozzle Orifice plate
6 diameters i Diameter Screen (8 wires/in.)

Station 5 -... . -.5 _

Outlet pipe

To altitude exhaust system

Fig. D,2b. Schematic diagram of research unit for axial flow compressor
collector showing location of measuring stations [2].

to obtain from flight tests, yet it must be secured for the design of mili-
tary aircraft. Extensive ground test facilities for this purpose are therefore
justified.

The weight flow of the test media is measured by devices such as
variable thin plate orifices, standard nozzles, or venturis, or by calibrated
entrance bells. Accurate results are most readily obtained when a settling
chamber containing a honeycomb to remove rotational components from
the flow and several screens to equalize the velocity oi the flow into the
meter is used. If the operating conditions are not greatly different from
those under which the calibration was made, satisfactory results can be
obtained with standard meters if the installation is made as specified [3].
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Flow measurements. In making flow measurements downstream of
single-stage compressors or turbine rotors, a survey is usually made along
a single radial line. Wakes from struts or blades upstream of the rotor
are usually not fully eliminated in passing through a single blade row.
Erroneous readings can result if proper precautions are not taken. When-
ever practical, duplicate measurements should be taken along more than
one radial line in the plane of the measuring station to ascertain that true
sample values are obtained. The accuracy of the results is best checked
through independent determination by separate methods. For example,
in high speed single-stage compressor tests, the power input can be ob-
tained by measuring the temperature rise, momentum and pressure in-
crease, and the torque applied to the rotor. As the total pressure rise and
the mass flow produced by a rotor can ordinarily be measured accurately,
the efficiency can be obtained by three separate and essentially inde-
pendent methods. Although not positive evidence of test validity, weight
flow checks at several stations often provide a clue that instrument cali-
brations have changed or other improper conditions exist.

Independent variation of Reynolds number and Mach number. In
order to study the operation of a gas turbine component or a model
thereof as the Reynolds number is varied, either the density, the veloc-
ity, the scale of the model, or the viscosity of the test medium may be
changed. Usually it is not convenient to vary the Reynolds number inde-
pendently of Mach number over a significant range in test installations
designed to permit rapid measurements and quick changes of the model
engine component. An attempt to study similar compressor designs over
a range of Reynolds number was made in Germany by Eckert [4]. In this
investigation a compressor rotor and stator design was built in several
sizes, all of the same blade camber and setting, chord-spacing ratio, and
hub-tip radius ratio. As the same inner and outer diameter was main-
tained for all tests, the blade aspect ratio decreased as the blade chord
increased. Thus, in this study, geometrical similarity was not obtained,
and hence comparison of the results suffered.

The most widely used method of varying compressor Reynolds num-
ber and Mach number separately is to study the engine component in a
closed circuit, permitting selection of the reference density. Auxiliary
pumping equipment of high capacity and power would be required to
accomplish the same result with open cycle operation. Closed circuit oper-
ation extends the usefulness of a given driving unit because compressor
power requirements can be matched by varying the system density. A
further advantage of the closed cycle is that fluids other than air may be
used as the test medium. Gases in which sound travels more slowly than
in air permit compressors to operate at desired Mach numbers with re-
duced rotational speed and stress. Freon 12 (CC12 F 2) has been used for
this purpose because it is nontoxic and stable under usual testing con-
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ditions. Due to the low value of y (the ratio of specific heats = 1.125)
compared to air (,y = 1.4), the use of Freon 12 should be limited to single
stages of low pressure ratio unless the component is designed for oper-
ation in this gas.

D,3. Instrumentation. Of equal importance to that of establishing
valid test conditions is the necessity of providing proper instrumentation,
if significant results are to be obtained. Results obtained from tests are
only as good as the instrumentation which provided the data. In any
comparatively new field of endeavor as that of the gas turbine, the de-
velopment of special testing equipment and instrumentation becomes
necessary. The high speed, unsteady flows that exist in the narrow pas-
sages between the compressor and the turbine blade rows have introduced
new problems of measurement. Since erroneous conclusions can result
from measurements made through the use of inadequate instrumentation,
each new configuration should be analyzed to determine the type of in-
strument, its location and the quantities which must be measured to ob-
tain reliable information. An excellent study of these problems has been
made by Dean [5].

Many instruments used in the gas turbine field are neither unique nor
complex. Indicating devices and methods of using them for measurements
of time, weights, and forces; humidity, pressure, and temperature of still
media; surface smoothness; and shaft speed to a high degree of accuracy
have been in existence for some time and need not be mentioned herein.
Sensing elements and indicators peculiar to, or of special interest in, this
field will be discussed briefly in this section.

The technique of instrumentation for the measurement of the over-
all component performance characteristics has a history dating back to
the early development period of the steam turbine. Today, however, there
is very much interest in detail measurements to determine the perform-
ance of individual stages or particular radial sections throughout the
axial flow compressor or turbine. Through such procedures the optimum
value of the aerodynamic design parameters can be determined to pro-
vide a basis for modifying existing machines and for the development of
improved future engines. Thus those measurements of the gas flow which
will completely define all its intrinsic values are necessary. In addition,
the machine speeds, temperatures, and in some cased, stresses, should be
observed to obtain optimum mechanical design to insure safe operation
with minimum weight.

DESIGN OF PROBES. Considering first those measurements required
to completely define the aerothermodynamic gas quantities at a point,
it is usually sufficient that the static and total pressure, the total tem-
perature, the direction of flow, and the gas composition be known. For
the calculation of the flow relative to any rotating element, the rotational
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speed must also be known to relate the measurements made in the sta-
tionary or absolute coordinate system to that in the relative or rotating

coordinate system. In addition, the turbulence level and vorticity are of
interest for correlation with cascade test results. Because the fluid pas-
sages in jet propulsion engines are small, the adaptation of sensing probes
designed for general flight or wind tunnel experimentation is not always
possible. The knowledge gained in older fields of aerodynamic research
has been used as a guide in the specialized field of gas turbine instru-
mentation. Instruments which protrude into the gas stream must be
compact and rugged to prevent erroneous readings from aerodynamic
interference effects and instrument deflections. Factors which affect the
size and design of the instruments are the accuracy, the reaction speed,
and the ease of manufacture that is desired or necessary.

Rate of response. To permit an estimation of the rate of response of
instruments to pressure changes, a series of tests using small diameter
tubes was made [6]. The tubes were connected to a manometer and a
pressure difference of 5, inches of alcohol was imposed. The manometer
deflection was recorded at even time intervals. Tubes having inside diam-
eters of 0.040, 0.020, and 0.010 in. and 12, 6, and 3 in. long were tested
(Fig. D,3a). Short lengths of tubes as small as 0.020-inch inside diameter
can be used in instruments for surveying flows which remain steady for
30 to 40 sec. The rate of response of Langley prism and pyramid probes,
described later in this section, is also indicated in Fig. D,3a. These probes
have 3-inch lengths of 0.020-inch inside diameter tubing attached inside
the probe stem to 12-inch lengths of 0.040-inch tubing.

A theoretical relationship for determining the lag in tubing of radius r,
length 1, into an instrument cavity of volume V has been derived in [71
and [8]:

Ap 8VJA1

dp 2/dt rr'ip,g

The volume term includes one half of the tubing volume. The term p.,
is the pressure at the instrument and p,, is the mean pressure in the tube.
The constant K is unity for air undergoing isothermal change. The equa-
tion was derived for conditions which do not include the slip and molecu-
lar flow regions. For relationships in these regions, see [91 and [101.

Total pressure. A wide variety of total pressure tubes have been re-
ported by Gracey [11] to determine the effect of angle of attack on the
pressure measured by the probes over a range of subsonic, transonic, and
supersonic speeds. The probe designs investigated included a wide range
of external and internal details (Fig. D,3b). The first group, designated
series A, had cylindrical exteriers. The second group, series B, C, and D.
had 15", 30", and 45* conical exteriors. The E series had ogival noses.
A group of shielded probes, designated series A., was also investigated as
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12" long 6" long 3" long

Straight tube with 0.040" id. -
Straight tube with 0.02U" id. - .h .s
Straight tube with 0.010" i.d. - --- --- '-
Average of wedge probe lines -.-------
Average of pyramid probe lines v- -7 .
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Fig. D,3a. Manometer tube deflection versus time for various size tube flow

restrictions as compared to the prism and pyramid probe reaction characteristics.
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part of this program. Most of the probes were tested over a wide range
of angle of attack at a Mach number of 0.26. Several of the probes were
tested at Mach numbers of about 1.6 and several were tested in the
Mach number range around 0.90.

The results of this investigation are presented in terms of the sensi-
tivity angle. The sensitivity angle is defined as the angle of attack at

o

0.2

0

02o MI
-02 -- .26~

-0.4 -0-, 1.621
---50 -40 --30 -20 -10 0 10 20 30 40 50

0Angle of attack a, degrees

Fig. D,3c. Variation of total-pressure error with angle of
attack of tube A-2 at subsonic and supersonic speeds.
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Fig. D,3d. Variation of sensitivity angle with size of impact
opening of cylindrical and conical tubes. M - 0.26.

which the total pressure error reaches a value of 1 per cent of the indi-
cated impact pressure. An example of the data from which the sensitivity
angle of the probes was determined is given in Fig. D,3c for tube A-2.
As determined from these curves the sensitivity angle is 230 at M = 0.26
and 290 at M = 1.62.

The effect of varying the ratio of the impact opening diameter to the
probe diameter is shown in Fig. D,3d for typical probes at M = 0.26.
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For subsonic speeds, enlarging the impact opening diameter with respect
to the probe diameter increases the angle range over which an accurate
value of total pressure can be measured. The effect of the internal cham-
ber shape on the performance of the probes can be obtained from a com-
parison of the results of tubes A-2 through A-11 as given in Table D,3a.
All of these probes had a large ratio of impact opening diameter to probe
diameter and all had a chamber depth equal to the probe diameter. The
performance of all of these probes is very good. The results indicate that
the conical internal chamber has about a 1.50 greater range than the

~30

201 - - -r --
External shape

CS -- 0- Cylindrical

>. -. c- 15' conical
"t -0 " " "30' conical . -

• .t r 45' conical
--C- Ogival

0V 00 10 20 30 40 50

Internal cone angle 13, degrees

Fig. D,3e. Variation of sensitivity angle with internal cone
angle for cylindrical, conical, and ogival tubes. M - 0.26.

cylindrical chamber and the hemispherical chamber has a range about
2.5* greater than the cylindrical chamber. The effect of varying the in-
ternal cone angle on the performance of cylindrical, conical, and ogival
probes is shown in Fig. D,3e. It is apparent from this figure that internal
cone angles of 300 or less are beneficial for providing maximum angle
range. Fig. D,3f also provides a comparison of the effect of external con-
tour on the performance of the probes at M = 0.26. For subsonic speeds
the cylindrical exterior is superior to the conical and ogival tubes.

From the results presented, it can be seen that the best combination
of external shape, relative impact opening diameter, and internal con-
figuration would be a cylindrical tube with a large impact opening and a
small internal conical angle. Such a tube produced a total pressure read-
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ing correct to within 1 per cent of the indicated impact pressure over a
range of ±:27.5 at M = 0.26.

Tests of tubes E-6, E-3, and E-4 having slanted impact openings indi-
cated that the total angle of attack range over which the tube is not
sensibly affected by angle of attack remains essentially constant but that
the insensitive range is shifted in the expected direction by an amount
very nearly equal to the angle of inclination of the impact opening.

Effect of geometry on performance of shielded tubes. Significant in-
creases in the sensitivity angle can be obtained by venting Kiel-type

0) 40 - -

( 0

6 3 0 1 . . . . D 2 / D

" o 0.500
C0 20 0.591
.20,

_____ () (b) .

g0 0.5 1.0 1.5 0 0.2 0.4 0.6 0.8

Relative vent area Probe position a/DAd&o

Fig. D,3f. Variation of sensitivity angle with vent area, probe position, and throat
diameter of shielded tubes. M - 0.26. (a) Vent area. (b) Probe position and throat
diameter.

shielded tubes as shown in Fig. D,3f for M = 0.26. As seen in part (b)
of this figure, the effect of the probe position within the shield and the
ratio of the shield internal to external diameter have little effect on the
range of a vented Kiel tube. As in the case of the unshielded tubes, the
effect of a slant on the front of the shielded tubes had the result of shift-
ing the center of the unaffected range in the expected direction by an
amount almost equal to the angle of slant. The effect of internal entry
angle into shielded tubes is shown on Fig. D,3g. Tube A.-5 had a conical
internal configuration with an internal cone angle of 280. Tubes A.-12 and
A.-15 were constructed with curved internal passages with internal entry
angles of 120 and 600 respectively. From Fig. D,3g, it can be seen that a
significant increase in working range can.be achieved by increasing the
internal entry angle of shielded probes. A vented, shielded tube having a
highly curved entrance exhibited acceptable performance over an angle
of attack range of ± 63° at M = 0.26.
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Fig. D,3g. Variation of sensitivity angle with angles of entry of shield of
three shielded tubes at M - 0.26. Tubes A.-5, A.-12, and A.-15.
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Fig. D,3h. Variation of sensitivity angle with Mach number Uf tubes having cylin-
drical, conical, and ogival external shapes with sharp and blunt leading edges. (a)
Cylindrical. (b) 150 conical. (c) 300 conical. (d) 450 conical. (e) Ogival.
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Efect of Mach number. In Fig. D,3h, the sensitivity of cylindrical,
conical, and ogival tubes of varying impact openings and leading edge
angles at M - 1.62 are compared with values at 0.26. It is seen that in
general the effect of Mach number is to increase the useful range for
probes of this type. That some justification exists for drawing a straight
line between Mach numbers of 0.26 and 1.62 is illustrated on Fig. D,3i,
which presents results for tube E-2 for Mach numbers from 0.6 to 1.1.
Also shown on Fig. D,3i are values estimated for the sensitivity of tube
E-2, estimated from test data taken from similar tubes at Mach numbers
of 0.26 and 1.62. From this figure there is evidence that the sensitivity
angle of nonshielded tubes varies linearly with Mach number in the range
from M = 0.26 to 1.62.

The effect of Mach number on performance for shielded tubes in the
subsonic range is shown on Fig. D,3j. A decrease of about 10 per cent in

) 30
0)
C
0 20

> 10 0 8-ft transoric tunnel tests
.ZG) 10 r Estimated from tube E-1 data
C 0

L 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Mach number

Fig. D,3i. Variation of sensitivity angle with Mach number of ogival tube E-2.

sensitivity angle is observed as the Mach number is increased from 0.26
to 0.9. The variation of sensitivity angle with Mach number for a par-
ticular shielded tube, A.-12, is shown in Fig. D,3k, over the Mach number
range from 0.26 to 1.62. The behavior of this shielded probe at M = 1.62
was differeat from the performance of the several unshielded probes tested
in this Mach number range. The difference in performance exhibited by
this probe was to indicate too high a value of total pressure at large angles
of attack whereas the unshielded probes deviated in the direction of indi-
cating a low total pressure at high angles of attack. Whether this behavior
is typical of shielded probes or pertained only to the particular probe
tested is not clear. Since the performance of probe A.-12 reversed at about
500 angle of attack and produced a zero error at 550, and negative values
beyond 550, it is possible that a different design of shielded probe would
produce a larger sensitivity angle at M = 1.62. However, investigations
which will require total pressure indication at angles of attack greater
than ± 40 at a Mach number of 1.62 are likely to be rather few in number.
Further data on Mach and Reynolds number effects on typical probes
are presented in (I]
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Total pressure tubes in struts. The measurement of gas properties in
small passages such as occur in turbomachinery is particularly difficult
due to the blockage which the instrument itself provides. One method of
attacking this problem is to bury the instrumentation as much as possible
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Mach number
Fig. D,3j. Variation of sensitivity angle with Mach number of

four tubes with shields having conical and curved entries.

within stationary objects which naturally occur in the flow path. Typical
examples of this would be stationary blades in compressors or turbines
or the struts which are used for support. Total pressure tubes installed in
the leading edge of such objects would provide a minimum blockage to
the air flow. The use of a flush tube in the leading edge of a compressor
blade is appealing from the practical standpoint. However, if the stag-
nation point location cannot be predetermined accurately or shifts during
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operation, flush orifices do not provide an accurate measure of the total
pressure since occurrence of the stagnation point at any location other
than directly over the orifice will cause the orifice to act to some degree
as a static pressure measuring device. Tests of 0.062" outside diameter
tubes located in the leading edge of an isolated airfoil having a 0.125"
leading edge diameter have been conducted to determine how far forward
such a tube must extend to be insensitive to angle of attack. Protrusion
of the tube one tube diameter forward of the airfoil leading edge yielded
total pressure readings within 1% of the impact pressure at a Mach num-
ber of 0.50 over an angle of attack range from +4 to -9 °.Protrusion of
the total pressure tube 2.7 diameters increased the insensitive range to

0 7 0Fr----- '"" •

W 60--

r 0 High speed 7 X 10-ft tunnel

40 a 8-ft transonic tunnel

0 4 - 4-ft supersonic tunnel
. 30--

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 18

Moch number
Fig. D,3k. Variation of sensitivity angle with

Mach number of shielded tube A.-16.

+9 and - 130 at a Mach number of 0.5. Chamfering the internal contour
of the total pressure tube with a total angle of 600 increased the insensi-
tive range in both directions by 20 for a protrusion of 2.5 diameters. In-
creasing the protrusion of the chamfered tube to 6 diameters increased
the range of insensitivity to ± 180, and a further extension to 8 diameters
did not improve the insensitive range.

Time lag and averaging effects. Probes do not necessarily indicate a
true, time-averaged value of total pressure when subjected to unsteady
flows. In [131 an analysis is presented of the effect of square-wave pres-
sure fluctuations on the reading of typified total pressure probes. Analyti-
cal results are compared with experimental results for probes of varying
diameters and lengths inserted and withdrawn from a high speed air
stream at a rate of from 3 to 50 cycles per second. The ratio of the time
at maximum pressure to the time of one cycle was varied from zero to
one, and the difference between maximum and minimum pressure was
varied from 0.05 to 0.8 of the minimum pressure. The experimental results
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were in good agreement with the theory for Reynolds numbers less than
8000, when Re is based on the inside diameter of the probe. The averaging
error was minimized when the inside diameter of the probe was made
small, and the length was large. A typical comparison is shown in Fig.

GA
P..

0.2 Experimental Theoretical 'Pm, ''

0 - 0.05
0 - 0.2

, 0.1

Probe 1: dia 0.012 in., length 12 in.

0.1

~E 0 1-
U)X Pr obe 2: .ia 0.012 in., length 2.0 in.

0 0 0.2 0.4 0.6 0.8 1.0
> Time at maximum pressure

Period
01.

Fig. D,31. Comparison of calculated and experimental probe error. Top, probe 1,
diameter - 0.012 in.; length - 12 in.; bottom, probe 2, diameter - 0.012 in.:
length - 2.0 in.

D,31. When the Reynolds number of an impact probe (based on the probe
radius) decreases to a value below 100, due to viscosity, a true reading of
total pressure is not obtained even under steady flow conditions. At a
Reynolds number of 50, the measured values are increased by about
12 per cent of the dynamic pressure for incompressible flow, or by about
2 per cent of the total pressure for compressible flow.
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An investigation of the frequency response of total pressure probes
having several lengths of .-in. inside diameter tubes leading to a j-in.
diameter pressure transducer has been conducted by Westley [141. The
frequency response was measured by impressing sound waves of 130 db
sound pressure level into a cavity 1.95 in. in diameter and 0.9 in. in
depth. The frequency range imposed was varied from 50 to 3000 cps.
The response using a tube length of 1.151 in. rose rapidly at frequencies
about 1000 cps, peaking around 1700 cps, and dropped sharply to low
values at 2000 cps. With a tube length of 2.558 in., the peak occurred at
about 950 cps. With a 5.806-in. tube, the peak occurred around 450 cps,
with a lower amplitude peak observed also at about 1300 cps. A signifi-
cant damping effect was obtained by filling the tube with cotton in tests
using the 2.558-in. extension, although some loss in sensitivity occurred
at higher frequencies. These results, including a comparison with a hypo-
dermic boundary layer probe tested at a sound pressure level of 140 db,
are summarized in Table D,3b.

Table D,Sb. Resonant frequencies, sensitivities and frequency range.

Length Resonant Sensitivity Maximum frequency for sen-
Probe of tube, frequency at resonance, sitivity within 0.157 ± 0.05

in. cycles/sec mv/v per lb/in.' mv/v per lb/in.2, cycles/se.

S0 - 0.157 2600
A 1.151 1700 1.135 1050
B 2.558 960 1.320 460
C 5.806 450 1.510 205

Boundary
layer
probe 11.05 75 0.225 60

An investigation of the effect on the frequency response of the
volume of the chamber between a 9-inch long total pressure tube having
a 0.031 inch inside diameter and the face of a microphone is reported in
[15]. By the -se of a suitable chamber so that the probe tube terminated
in its characteristic impedance, the frequency response was smoothed
significantly over the range of calibration from about 100 cps to about
8000 cps.

Static pressure. Wall taps are the most reliable means of measuring
static pressure within turbomachines. Sharp-edged, 0.040-in. diameter
orifices drilled at 90 ± 100 to the surface are simple and satisfactory,
although careful inspection to avoid burrs is in order. Fig. D,3m pro-
vides an indication of the errors encountered with several configurations
of wall static pressure orifices [16]. Several commonly used designs of
static pressure probes and their performance are discussed in [171. This
work indicates that the static pressure error is less than 0.1% of the
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Reference form
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Fig. D,3m. Effect of orifice geometry on static pressure measurement.
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dynamic pressure if the orifices are 5 or more probe diameters down-
stream of the nose and 10 or more stem diameters upstream of the stem.
A hemispherical nose is desirable for subsonic probes; ogival or conical
tips for supersonic velocities. From this and other investigations, the ori-
fice in a probe or other surface has been found to yield the most accurate
readings if made very small (0.1 probe diameters or less) and twice as
deep as the orifice diameter. For the small diameter probes necessary for
gas turbine research, orifices of this size are difficult to make and indicate
slowly. Orifices about twice the diameter indicated by the above rule
may be employed with negligible error, although 0.015 in. is considered
optimum.

Static pressures must sometimes be measured in flows of extreme
fluctuation. Under these circumstances a high order of accuracy cannot
be expected, but comparative results can be obtained by shielding the
orifice from the dynamic pressure by a high resistance screen. A porous
sphere, perhaps of sintered metal, appeals as an obvious shield for the
orifice. Fine mesh metal filter cloth rolled into a j-in. diameter cylinder

in. long and sealed on one end and soldered to a --in. stem works
reasonably well in incompressible flow.

A method of preventing standing waves in pressure leads between an
orifice and a transducer is described in [18]. The effect of an infinite
extension of the pressure lead tubing was obtained by providing a spiral
passage about 300 tube diameters long containing an absorbent material
after the transducer. A resonance-free response up to 8000 cps was
observed.

Flow direction. The direction of flow relative to a principal axis of
the machine may be obtained with relative ease with the calibrated
spherical-head type of probe discussed in 119]. The more direct method
of measurement, the so-called null type, requires rotation of the probe
so that the pressures at two symmetrical openings in the instrument head
are equal. The null-type yaw head is especially useful in combination
instruments designed to measure the flow angle and the static and total
pressure simultaneously since the probe is aligned with the flow when
the readings are taken; however, such probes usually require calibration
to determine their mutual interference effects.

A cylindrical tube having pressure taps at three circumferential po-
sitions at the same axial location is a practical null-type instrument for
direction and total pressure measurement. A calibration curve for a typi-
cal cylindrical probe having the yaw orifices oriented 550 from the total
pressure opening is presented in Fig. D,3n from [0]. The directional
sensitivity of such probes is satisfactory, as the pressure difference in
the two yaw orifices is about 6 per cent of the dynamic pressure per degree
of yaw, and the total pressure varies only I per cent of the dynamic pres-
sure for either 50 of yaw or 50 of pitch. The advantages of this type of
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probe are simplicity, ease of installation, and ease of maintaining accu-
racy due to the lack of extended arms. The prime disadvantage is that,
in practice, accurate static pressure measurement cannot be made. 2

In the investigation reported in [6], a study was made of the basic
element.3 of combination probes intended to measure the total and static

0.120"
° _ x0.01 5" dia

I1.2

0.8--

0.4 ..... ___ _ __ _ __ _

-o.
0.0

0 M=0.7
-0.4 A M=0.5

E3 M =0.3

-0.8 [ M O.

-300 -20' -100 oo  100 200 300

Yaw angle, tp

Fig. D,3n. Change of probe pressure difference with yaw angle.

pressure and the direction of the flow (see Fig. D,3o). To determine the
most sensitive design for null-type probes, the pressures indicated by
tubes having ends slanted 30, 45, 60, and 900 from the tube axis were
recorded as the yaw angle was varied from + 1800 to - 1800. The results
of these tests are presented in Fig. D,3p. The sensitivity of all four tubes
was very good. The yaw tube pressure difference ranged from 2.3 to 3.0
per cent dynamic pressure per degree as the angle of cutoff was increased
from 30 to 900. The sensitivity of claw-type yaw probes (Fig. D,3q) was
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obtained by testing instruments having the configurations indicated in
Fig. D,3r. Probes having a 15 to 450 included angle between the slanted
probe ends and a 1200 included angle between the arms were found to be
very sensitive, indicating a pressure difference per degree of yaw angle
of about 9 per cent dynamic pressure.

Thermalflag. The usual type of flow direction measuring instrument
employed in aerodynamic measurements relies on sensing a fraction of

....--- ._0.050" o.d.
- -0.040" i.d.

2"

- -F dia

Fig. D,3o. Details of yaw element probes.

the dynamic pressure of the flow. In the usual case, two orifices are lo-
cated symmetrically a finite distance apart in space or on the surfaces
of a sphere or wedge. In the presence of a velocity or total pressure
gradient, such instruments are inherently unable to read the true flow
direction because of the finite spacing between the orifices. Hot-wire
anemometers have been used in attempting to overcome this problem
but are too delicate for most practical applications. The hot film probe is
more rugged but suffers from the effect of the finite distance between
measuring surfaces. Flow visualization techniques have also been used,
particularly tufts of materials having little mass but high flow resistance.
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Fig. D,3p. Indicated pressure versus yaw angle of
four yaw element probes. 295 ft/sec.

A device which has recently received attention inl an attempt to solve
this problem is the thermal flag. This probe uses a thermister of smal
diameter (typically 0.014 i,%) to detect the wake of a warm wire having
a diameter of 0.002 in. Although these wires are small, they are larger
by an order of magnitude than the wires employed with hot-wire ane-
mometers. Thermal flags have been used to survey the exit flow from a
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Fig. D,3q. Details of claw-type yawmeters.
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Fig. D,3r. Yaw sensitivity of claw-type instruments. 295 ft/sec.
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long pipe having a turbulent boundary layer. Some advantage of thermal
flag yaw probes over conventional cobra and wedge probes was observed.
However, a true comparison of insensitivity to gradients cannot be made
from the results of this preliminary investigation due to differing stem
details of the probes tested, and stem design was shown to be significant.

Combination probes. A widely used combination probe consists of a
central claw-type yaw head with total and static pressure probes located

j --0 060"

+ 0

7 0

n o

0.250"

01.000.

Fig. D,39. Details of claw-type combination instrument.

on the sides. While such instruments are relatively easy to make, the
extended tubes are easily bent, and the static pressure calibration factor
is usually not constant as the speed is changed (Fig. D,3s). Further, the
readings are not taken at a single point in the flow; therefore, in streams
of varying pressure or direction, a true indication of existing conditions
is not obtained (Fig. D,3t).

A combination instrument intended to measure flow direction and
pressure at a small point is illustrated in Fig. D,3u. In this instrument,
the prism probe, the flow direction, and total and static pressure are ob-
tained by orifices in the front and sides of a 0.090-in. outside diameter
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tube. Prism probe o:of this size require somewhat closer work to install
the tubes than do ix-ilar claw-type probes. The prism probe is, however,
much less prone toloa.se its calibration. The sensitivity of a typical prism-
type probe to yava:.Lmd to pitch is shown in Fig. D,3v and D,3w. The

CC

* 0

Wu Fl0 wove ocity, t/sec
50_100 1.50 200 250 300 350 400 450 4 CX

e4 
0

n 16 . .... ....

04-

_ - 24 - . . . .. ..

10 8 6 4 2 0 -2 -4 -6 -8 -10

Yaw angle qp, degrees

Fig. D,3t. Variatoa of yaw tubes pressure difference with yaw angle. Difference
in static pressure riiing between instrument (claw type) and standard static probe
with flow velocity.

static pressure aliff bration varied less than 1 per cent dynamic pressure,
and the yaw null rpoint by less than as the velocity was varied over
the test range fmw 1 100 to 500 ft/sec.

A comparisa dIas been made between the turning angle calculated
from measuremnt.s made by a stationary prism probe and that measured
directly by a pring-i pro-be rotating with the rotor of a 28-in. tip diameter
axial flow compress.sr. Readings were taken at three diameters over the
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stable range of the compressor. This comparison is presented in Fig. D,3x.
Although the instrument rotating with the rotor was placed midway
between blade wakes and was not traversed in the circumferential direc-
tion, excellent agreement was obtained.

Recently, emphasis has been placed on the study of secondary flows
and end losses in turbomachines. The gas motions in such flows rarely lie
in a single plane. To measure three-dimensional flows with the more usual
instruments would be a laborious task because consecutive surveys using

!0.250" dia [150"

t. 0. j 0.~o~~ 030"

10'r 0.020
o 0.020"- 0'

0.090" o.d.
View A-A

0.006" dia hole, 4 places, o5
900 apart

3 030

A A

Fig. I),3u. )etails of prism-type probe.

probes at right angles to each other would be required. Instruments
capable of indicating flow direction in more than one plane are desired
to permit resolution of the actual flow. The spherical-head probe reported
in [171 can be used for this purpose. A true indication of static pressure
is not readily obtained with a spherical head.

An extension of the prism-type probe designed to indicate flow direc-
tion in two planes and total and static pressure has been developed. With
this instrument, the pyramid probe, readings are obtained by orifices in
the front and sides of a 0.090-in. outside diameter tube (Fig. D,3y). Con-
siderable skill is required to construct pyramid probes of this size, but
only 30 man-hours were required to make the first of this type. Calibra-
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tion curves for a pyramid instrument in yaw are presented in Fig. D,3z
and in pitch in Fig. D,3aa. When this probe was rotated ± 100 in roll at
zero yaw and zero pitch angle, the static pressure calibration varied less
than j per cent of the dynamic pressure and the pitch and yaw null

CC

U0
4-"30- 0

0. 10

_L

OL" ' 30 -1

U0
C

-4 O-_1- 0 -. . . -C.... - - L

CC

4u-

>- -10-8-6-4-2 0 2 4 6 8 10

Yaw angle, P degrees

Fig. D,3v. Variation of yaw tube pressure difference. Differences in static and total
pressure readings between prism-type probe and standard static and total pressure
probes with yaw angle. 3}90 ft/sec.

points changed less than j0. Over the test velocity range of from 100 to
500 feet per second, the calibration held equally constant at zero yaw,
pitch, and roll angle. A study of probes for three-dimensional flow m~oas-
urement is presented in [21].

A probe designed to permit null-type pitch angle measurements over
a 600 range without rotating the entire probe in that plane is shown in
Fig. D,3bb. The probe is rotated about the stem axis in the usual manner
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for yaw angle measurement. For pitch angle reading, the lead screw is
actuated until equal pressures are observed from the "pitch" orifices. The
motion of the lead screw is then read and converted to angular values.

Extensive calibration of a hemispherical-headed probe containing a
central total pressure orifice and two pairs of orifices located in perpen-
dicular planes for flow direction measurement has been conducted at sub-
sonic and transonic speeds [221. The results indicate a smooth variation

QQ

)" U0 -~ .- 1 P po

0 
u

-10 -8 -6 -4 -2 0 2 4 6 8 10
Pitch angle n, degrees

Fig. D,3w. Variation of yaw null point and differences in static and total pressure
readings between prism-type probe and standard static and total pressure probeswith pitch angle. 308 ft/sec.

in the sensitivity to flow angularity of the probe in the speed and angle
range investigated.

In small scale model tests, insertion of a multitube probe may signifi-
cantly disturb the flow. If the flow is reasonably steady, total pressure
and direction can be measured and static pressure approximated by re-
cording of pressure and angle as a single tube containing a surface orifice
is rotated about the axis of the tube. For surveying a passage, continuous
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rotation and recording with rapid response equipment can be used as the
flow passage is traversed by the orifice.

Temperature. Temperature measurements in turbomachinery are
ordinarily made with thermocouples, although mercury-in-glass and
resistance thermometers are used with high accuracy when the size of
the sensing element can be relatively large. For high sensitivity over

Stationary prism
probes for three
series of tests Rotating prism probe
I1st 2nd 3rd

.x , v s 0 , , 0 D 0.

2 o avseo 0 9 0 V

@318

• 16-

14 Y
03 12 ---

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16 

Angle of attack a, degrees

Fig. D,3x. Comparison of flow angles at three radii of a compressor rotor as measured
by both stationary and rotating prism probes during three similar series of testa.

narrow temperature ranges the thermistor is superior up to its maximum
value, currently about 600F.

The working ranges of various temperature measuring systems are
presented in Fig. D,3cc, taken from [28]. This figure also provides an
indication of the uncertainty resulting when temperatures are measured
by these various devices. In addition to the thermocouple materials pre-
sented in Fig. D,3cc, iron-constantan is widely used in the lower temper-
ature range and chromel-alumel in the middle range. For higher temper-
atures, iridium and silicon carbide can be used to 4000*F, as in the design
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shown in Fig. D,3dd. Platinum and its alloys and tungsten have also been
used for high temperature thermocouples. Water-cooled probes are often
necessary when high temperature gas streams are being measured. The
sensing element may be shielded from the cooled walls for minimum cali-
bration factors, or may receive the gas after it has been cooled, (Art. 9).

1.50"

0.0 .25" o.d.

40035" 0.090" od.
O

45' 450

- B B
6 _ View B-B

0.006" dia hole,
A 4 places, 90' apart

o L
I 0 , 30'3 4- _ ,_ - - A

S0.020"

0 020" dia hol~es, 0.020" square centered over
5 places center hole and cut perpendicular View A-A

to probe center line

Fig. D,3y. Details of pyramid-type probe.

By vibration-filling the insulation into pencil-type probes, Fig. D,3dd,
it has become practical to fabricate these coaxial thermocouples with out-
side diameters of 0.030 in. Such probes having wall thicknesses of from
0.003 to 0.005 in. can be subjected to a bend radius of 0.05 in. without
affecting their performance. Lengths of ten feet can be fabricated reliably.

The National Advisory Committee for Aeronautics has reported a
series of tests [24] of the temperature indication and response rate of
3 bare-wire and 3 shielded thermocouples (Fig. D,3ee). The probes were
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tested at subsonic and supersonic speeds with a total pressure of one

atmosphere and a total temperature in the range from 70 to 1000F.

Twelve samples of simple butt-welded, exposed wire thermocouples

(probe 1) exhibited a roughly linear variation of recovery ratio in the

subsonic range, varying from Ro = 0.997 at M = 0.2 to Ro - 0.971 at 4

-
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Fig. D,3s. Variation of pitch null point, yaw tube pressure difference, and differences

in static and total pressure readings between pyramid-type probe and standard static

and total pressure probes with yaw angle. 402 ft/sec.

M = 0.8. In the supersonic range, five samples of probe 1 indicated a

linear change of Ro from 0.9593 at M = 1.28 to 0.9564 at M = 2.21.

Probe 2 indicated only a small and consistent decrease in recovery

ratio with increasing Mach number. Ninety probes exhibited R0 values

from 0.9985 at M = 0.2 to 0.9905 at M = 0.8 with little scatter. At

supersonic speeds, the trend of R0 with M continued for the two probes

tested, but at a reduced rate until the probe tip intersected the bow shock
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wave of the probe support. When this intersection occurred, at Mach
numbers between 1.4 and 1.7, a rapid and nonlinear decrease in Ro with M
occurred.

The recovery of twenty probes of type 3 exhibited the same value of
R0 at M = 0.2 as probe 2. At higher speeds, Ro decreased more rapidly
with Ro 0.9835 at M = 0.8, probably because the flow velocity in the
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Fig. D,3aa. Variation of pitch tube pressure difference, yaw null point, and differ-
ences in static and total pressure readings between pyramid-type probe and standard
and total pressure probes with pitch angle. 402 ft/see.

region of the thermocouple junction of probe 3 is higher than for probe 2,
due to the greater obstruction of the flow afforded by the supporting
shaft of probe 2. Less discontinuity in the variation of R0 with M was
observed with probe 3 in the supersonic range, R0 decreasing from about
0.965 at M = 1.2 to about 0.945 at M = 2.2.

The total temperature indication of the shielded probes 4, 5, and 6
(Fig. D,3ff) was very satisfactory and, particularly in the case of one
.hundred type-5 probes, consistent.
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Changes in the difference between the true total temperature and the
reading of the probes were observed under conditions other than those of
the original tests which were run at a total pressure of one atmosphere
and with yaw and pitch angles equal to zero. The change observed is ex-
pressed as a ratio to the difference measured under the original test con-
ditions. The effects of varying total pressure, yaw angle, and pitch angle

0.750" da, Lead screw

--- Lead screw nut

Crosshead
Key

-Connecting rod

6 .o 27.5'

s0L n
50,

Fig. l),3bb. l)etails of 4-htole yaw and pitch probe.

are presented in Fig. D,3gg, D,3hh, and D,3ii, respectively. The shielded
probes indicate larger changes in the parameter (Ro - R)/(1 - Ro), in
general, than the unshielded probes. Since 1 - R0 is smaller for the
shielded probes, the change in temperature reading is not necessarily
larger for the shielded probes, however.

SuRVEY MECHANISMS. For surveys of flow through an annulus, the
measuring instruments must be supported in suitable holders to permit
accurate radial, angular, and, in some cases, circumferential positioning.
For most low and medium speed studies, manual operation is the most
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accurate and the least complicated. A typical instrument carriage and
combination probe used at the NACA Langley Laboratory for low speed
annular cascade and compressor research is presented in Plate D,3a. The
traversing drive screw has 20 threads per inch. The indicating head used
to turn the drive screw is graduated in hundredths of an inch. The yaw

0.1

0.0001 Plainumn resistance thermometer

+1 0.00 - - - -Mercury-in-gassthermomter-

0.0001 "Copper-constantan thermocouple-_

• 0.0001 t- - -T - - 1 -
! '. / . /// . PalIlad iu m-silIver thermocouple.

0.0001

) -- Platinum-rhodium 11 tinumtthermocouple'// >/
I 0.0001 -",.'

Disappea rin filament optical promete' ///" .,;, :,/,-,

0 .0 0 0 1 . 1 1: 12 2 1 2 i il .7 i l<
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Range, C

Fig. D,3cc. Range and. reproducibility of various temperature-
measuring instruments under best conditions.

Silicon carbide

Fig. D,3dd. Pencil-type thermocouple probe in which silicon carbide
serves both as a supporting tube and as an active element.

arm attached to the probe carries a vernier scale permitting angular
measurements in tenths of a degree over a range of 180 degrees.

During operation of experimental engines or high speed components,
danger to personnel close to the installation is ever present. To reduce the
hazard, remote-controlled and indicating survey mechanisms have been
developed. In the compact carriage shown in Plate D,3b, one electric
motor drives the lead screw for traversing motion and another rotates
the barrel to which the probe is attached. Indication of linear and annular
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position is obtained by self-balancing potentiometers which measure the
resistances of a helical potentiometer geared to the carriage barrel.
Instrument mounts that indicate remotely by means of selsyns have been
used successfully.

A remotely controlled, remote-indicating carriage for surveying the
flow in cascade tunnels is illustrated in Fig. D,3jj (5]. The yawmeter
assembly slides along two rails parallel to the cascade. The carriage, or
saddle, is moved along the rails by a lead screw which is driven, through
reduction gearing, by a repeater motor. Manual control can be used for
detailed work or for checking purposes. The yawmeter extends through a
wormwheel with a worm that is spring-loaded to avoid backlash. The
worm is driven by a repeater motor. The yawmeter is accurately keyed
to the wormwheel so that correct alignment is always obtained to permit
removal of the instrument for recalibration. The yawmeter can be moved
manually to permit traverse in the spanwise direction of the test blades.
The motions of the main lead screw and the wormwheel can be trans-
mitted to a drum and scriber to produce a permanent record, automati-
cally, of air direction against distance along the cascade. Motor-driven
units can be made to align null-type yaw probes automatically. This is
accomplished by connecting the pressure leads from the yaw tubes to a
sensitive pressure switch. A pressure switch developed at Langley Field
consists of a small metal disk attached to a thin (0.008-in.) rubber dia-
phragm about 1 in. in diameter. A fine wire soldered to the disk forms
part of the motor circuit. Wires which complete the left rotation and
right rotation circuits of the motor are attached to pointers located a few
hundredths of an inch away from the disk, one on either side of the dia-
phragm. The pressure lead from one leg of the yaw head is connected to
a small chamber on one side of the diaphragm and the lead from the
other yaw leg is connected to the chamber on the opposite side. If un-
equal pressures exist, the diaphragm moves to one side, the disk and
pointer contact, and the proper circuit is made to cause the probe to be
rotated toward the null position. When operating correctly, the instru-
ment hunts rapidly about the null direction with an angular motion of
± °. Difficulty has been experienced in obtaining pressure switches that
are sufficiently sensitive for operation with low dynamic pressures and
strong enough for use with high dynamic pressures. A pressure switch
developed at the National Gas Turbine Establishment, Farnborough,
England, uses a 0.0025-in., phosphor-bronze diaphragm 5 in. in diameter.
The sealing disks which form the pressure chambers each carry two insu-
lated contacts connected to low speed and high speed circuits of the drive
motor. The low speed contacts are set to within 0.001 in. of platinum
contacts on the diaphragm. A pressure difference of about 1 in. of water
is sufficient to actuate the switch. The gap in the high speed circuit is
about 0.003 in. To prevent hunting, the contact spacing should not be
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set too small, and the air volume in the pressure leads and chambers
should be kept to a minimum.

MEASURING AND RECORDING METHODS. The testing of a gas turbine
or turbine component usually requires the recording of many pressures.
Liquid manometers, either U-tube or multitube, are commonly employed
for indication in lengths of from 3 to 6 feet. Alcohol, water, tetrabromo-

Two-hole ceramic insulator
0.16.t 0.01

0.4" 150 50 0.170
0.083"

0.210"
24 gauge

I+t
dia - 0 # 28 gouge

LJ T-6dic -

Probe I Probe 2

450~ _.2 dia tubing450-t 50 16

0.100"
150 51 0.150"

0.30"

0.030" dia balancing tubes 0.45"

30 gouge

Probe 3

Fig. D,3ee. Thermocouple probe details. Tubing diameters given in nominal size:
wire sizes in American wire gauge. (All dimensions in inches.)

( 204 2



D,3 INSTRUMENTATION

Section A-A Laminated silicone

0.003" Four-hole ceramic
0 A - , Thick insulating
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0.0 14" wall

0.020" dio, max - 4 0.058"
t -- -4 0.062

~~0.011I" '
A A o.13"

slot
0.064" dio

Fio. D3,ee. (Continued)

ethylene, and mercury are the most frequently used fluids. Discussions
of various manometer types and their fluids may be found in [26,27].
Information on conventional U-tubes (multitube, projection, and tilting)
and micromanometers is given. Mechanical, optical, and electrical types
of pressure capsules are also described for uses where special conditions
make them desirable. When many pressures must be recorded simultane-
ously, a recorder described in [28] will provide a trace on paper propor-
tional to the magnitude of the pressure for sixty or more readings.
Pressure-sensitive switches have been successfully employed by the
NACA [29,801 for rapid recording of many channels of data. This NACA
technique and others are described in [,11.
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Fig. D,3ff. Recovery ratio as function of free stream Mach number at
reference conditions. Top, probe 4; middle, probe 5; bottom, probe 6.
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Fig. D,3gg. Variation of recovery ratio with total
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Fig. D,3ii. Variation of recovery ratio with pitch angle at

I atm total pressure and zero yaw angle.

COMPOSITION OF TEST MEDIUM. The composition of the test medium
must be known for the accurate computation or correlation of perform-
ance characteristics. With air as the test fluid, this is a simple matter
since the measurement of the only usual important impurity, water vapor,
can be made by sensitive hygrometers. If gases other than air are used as
test media, the velocity of sound in the fluid must be known. In [82],
the use of a Helmholtz resonator to measure the velocity of sound in a

(207)



D EXPERIMENTAL TECHNIQUES_

P;1

>4)o

oo 9

-5
xC

* - w- a 0 4

208



D,3 INSTRUMENTATION

gas is described. In essence, the device consists of two chambers con-
nected by a small orifice spanned by a hot wire. A sample of the gas is
introduced to both chambers. A diaphragm forming one end of one cell
is driven by an audio oscillator over a range of frequencies. At a fre-
quency of resonance, an oscillating flow occurs across the orifice; the hot
wire circuit is affected and so indicates. Theoretically this meter would
not require calibration, but in practice calibration is necessary due to
nonideal diaphragm action and to the sensitivity of the device to slight
construction inaccuracies, particularly with regard to the shape and
dimensions of the orifice.

MECHANICAL MEASUREMENTS. To determine mechanical perform-
ance, the measurements of interest in gas turbine development are rota-
tional speed, temperature, stress, vibration, contour accuracy, transmitted
force or torque, and running clearances. The temperature measurement is
usually made using a thermal sensitive element at the point of the desired
temperature reading with an indicating device some distance away. Three
general types, the vapor pressure, liquid expansion, and electrical are
described in [33]. Units of these types have been in use for some time,
and good accuracies can be obtained with standard instruments and pro-
cedures. For measurements made on rotating elements, the electrical type
with slip rings is almost universally used. Stress is nearly always found
using strain measurements and the known stress-strain relationship of the
material. The wire straingauge unit is superior to other methods, and is
in general use. Description and test results of 6 commercial kinds are
given in [34]. Although care is required in their use, the effects of pre-
straining, temperature change, and weathering have been found to pro-
duce small and easily explainable errors [85]. If vibration measurements
are required, three basic instruments that may be applied are the vibro-
graph which records flexural vibrations in any direction, the torsiograph
which normally indicates torsional vibration of nonrotating elements, and
the vibration indicator which employs a feeler unit that can be attached
to any vibrating element to record effective amplitudes [36]. All three
have been designed to provide the vibration record on magnetic tape or
photographic film for observation.

Torque measurement. Methods of determining the torque transmitted
by a rotating shaft fall into two classes. The first class includes those sys-
tems in which the reaction of the rotating members on stationary casings
is measured. In most cases, this type is mechanically simpler. The most
widely used example is the electrical dynamometer, used either as a power
source or as an absorber. A torque arm ip attached to the stator casing
which is supported in bearings. If the torque transmitted is low and
steady, the magnitude can be determined by resting the end of the arm
on a platform scale. In those applications where the torque is apt to
fluctuate somewhat, the torque reading is obtained by measuring the oil
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or air pressure on a diaphral.gm o, r piston or the resistance of straingauges
mounted on a link resisting ; rta.tion of the casing.

In the second class are tase :systems in which the torque in the rotat-
ing shaft is determined by mneasmuring the shaft twist. These methods are
used in engine testing, or irn crrponent testing when gears or the design
of the power source or absorbew make reaction methods impractical or
inaccurate. The twist in a sithaft c:an be deduced by attaching straingauges

to the shaft with electrical c s-nne ctions to stationary meters made through
slip rings [37], or by detectzing t:he relative angular motion between two
sections of the shaft some • dista. nee apart. There are several methods of

accomplishing the latter. 1-f twc) toothed wheels are rigidly attached to
the shaft, a fluctuating emif will be induced in magnetic pickups close to
the wheels as the shaft rot-ates. As the shaft twists under load, a phase
shift in the two induced vooltages proportional to the torque transmitted
will occur [38,39]. By the umac of suitable instruments the phase shift can
be measured, and the twistt ancll torque obtained. If means are provided
to rotate the pickups, a new position can be found such that the phase
difference is nulled. The armgula.r differsace between the pickups at zero
load and at the operating I .oad sE3hould be proportional to the twist of the
shaft and to the torque.

The twist in a section oef a shaft can also be determined by measuring
the change in inductance oor capacitance in suitable circuits, caused by a
change in the spacing betw -een saurf aces attached to the shaft. In practice,

this is accomplished by attzachimg a sleeve containing one surface to each
of the twisting sections. T1lhe s-urfaces that are part of the electrical or
electromagnetic circuits lii in a.xial planes with a small air gap between
them. As the shaft twistse, the gap, and hence the capacitance or the
inductance, changes. The .ehan~ge in capacitance, and therefore the shaft
twist and torque, can be Eneas-ured by a stationary circuit through slip
ring connections. When th-ae air gap is part of an electromagnetic circuit,

the torque which is relatEd to the change in inductance can be deter-
mined by a stationary circuit v-vithout the use of slip rings [401.

An optical nmethod of torquie measurement investigated by Rebeske
was found to be inferior tc= stra-ingauge torquemeters [411. Other systems

rely on the change of magrmetic permeability or electrical resistance of the
shaft material or special c -oatinags under load to provide an indication of
transmitted torque.

Clearance measurement!. \With the development of light weight en-
gines the measurement of clear ance between compressor or turbine blade
tips and casing has becon-ne mcre important and more difficult. Because
lighter casings are more flexibLe, they are more susceptible to distortion
from vibration, pressure v -ariat ions, and flight accelerations. Also, in gen-

eral, the permissible size c: f the sensor becomes increasingly restricted as
the engine hardware is paoked closer together and as the casing thickness
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Plate I),3a. Combination instrument and instrument
carriage for low speed testing.

P~late I ,3h. Rlemote control instrument, carriage. Plate I ,3c. Clearanceonieter probe.
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Plate D,4a. Construction of porous wall test section.

Plate D,4b. No. 3 high speed cascade tunnel of National Gas Turbine Establishment.



Plate I),4c. Langley 7-inch high speed cascade tunnel.
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Plate D,41. Langley supersonic cscade.

P'late 1)4g. Supersonic cascade at
University of Toledo.



Plate D,4h. Toledo supersonic cascade tunnel witi. aide plate removed.
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Plate D,6a. Pressure transfer device with top half of casing removed.

Plate I),fib. Installation of large-capacity centrifugal compressor.



Plate D,6e. Radial-inlet impeller used in experimental
investigation of flow within rotating passages.

Plate l),a. Stator assembly showing installation of
total and static pressure orifices.



Plate D,7b. 60-inch diameter low speed research
compressor of General Electric Company.

From air supply Toai sppy xhus Steam ejector exhaust
Tes tnk B"Dry airspi

4500 H P Drive

Booster Compressor

Plate I),7e. Scale model compressor testing facility of General Electrie Company.
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Plate D,6c. Radial-inlet impeller used in experimental
investigation of flow within rotating passages.

Plate I),7a. Stator assembly showing installation of
total and static pressure orifices.
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Plate I ,Xh. Cold air turbine testing facility of General Electric Company.
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plate I),9a. Engine tests for combustion chamber exit temperature traverse.

lIate D1)9W Tiirhine-propeller engine and suspension arrangement.
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is decreased. A continuously indicating clearance measurement system
has been developed which utilizes a small, lightweight sensing element
(Plate D,3c). This device measures changes in electrical capacitance be-
tween the probe and the running blades. The system is capable of meas-
uring clearances in the range of from 0 to about 0.180 inches for a normal
compressor or turbine blade. The accuracy of the measurement is esti-
mated as being within ± 5 per cent. A standard probe can be used with
engine temperatures up to 9000F and a special high temperature clear-
anceometer probe which is equipped with cooling air has been used for
turbine measurements at temperature up to 1500*F. The probe is cali-
brated by static measurements, and the indication is most satisfactorily
obtained through the use of a calibrated oscilloscope. However, the indi-
cation of tip clearance may also be recorded on magnetic tape.

The principle of operation of this clearanceometer is that the probe
operates as a resonant electrical circuit. A coil in one end of the probe
forms part of the resonant circuit and the capacitance between the end
of the probe and compressor or turbine blade forms another part. As the
clearance between the probe and the bucket changes, the tuning of the
resonant circuit is affected and the resonant frequency changes. The indi-
cation system consists of a crystal-controlled oscillator, a radio frequency
amplifier, and a phase-sensitive discriminator. The change in capacitance
as caused by the change in clearance is quite small so the circuit must be
very sensitive. The probe must be mechanically stable to prevent signifi-
cant changes in the physical distance between the probe and the blade
end. A serious consideration in the design of this type of clearance meas-
uring device is the frequency response required to maintain the wave
shape of the blade passing pulses with correct indication of the peak
amplitude over the engine speed range. In a typical case the blade pass-
ing frequency is often 12,000 cycles per second or greater. A frequency
response which is linear to at least 20 times the fundamental is required
to assure accurate measurement of this wave form.

A radio frequency carrier system was selected as the method of de-
tecting a clearance-sensing capacitance for several reasons. This circuit is
sensitive to static changes in capacitance, which permits steady state
clearance measurements and calibration and permits the instrument to
be calibrated statically without access to the engine. The radio frequency
system used is relatively insensitive to extraneous signals. A frequency of
10 megacycles was used in this system to assure adequate frequency re-
sponse and sensitivity to small capacitance changes.

The metal parts of the clearanceometer probe were constructed of
Invar, which has a very low temperature coefficient of expansion. Of
several materials tested, fused quartz was selected as the most satisfac-
tory for the coil form and dense boron nitride for the spacers. These
materials were found to be adequately stable both mechanically and
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electrically for dynamic measurements over the temperature tange to
which they were exposed. The major difference between the standard
and the high temperature probe is the provision for passing cooling air
through the probe and around the sensing plate in the high temperature
probe. Ionized gas is a sufficiently good conductor to serve as a ground
for the probe and the output indication is then a function of the clearance
between the probe and the ionized air surface rather than the true bucket
clearance. The stream of cool air flowing around the sensing plate de-
fleets the ionized gas from the immediate vicinity of the capacitance plate,
thus permitting metal to metal clearance measurement.

Straingauges. The mechanical design of the various components of
gas turbine engines has probably made more progress and advanced closer
to perfection than the aerodynamic design of compressors and turbines
or than the aero-thermodynamic design of combustors. A significant part
of this advance has been due to the application of advanced theory, but
this is equally true in the fields of aerodynamics and combustion. A factor
which has enabled the mechanical designer to progress rapidly is the
recent increase in sophistication of the straingauges, thermocouples, clear-
anceometers, transfer devices, recording methods, and analysis systems
which have been developed. In the early phases of a new engine develop-
ment several dozen straingauges may be applied to the blades and disks
of the compressor and turbine rotors and stators. Turbine disk and bla.,
temperatures can be recorded at a dozen or more strategic locations. The
rotor blade tip clearances of one or more stages of the compressor and
turbine can be indicated and recorded continuously during tests. By real
time monitoring and electronic integration of the stress history, the me-
chanical analyst has a very good indication of how close to failure the
critical elements are operating and how many more high stress test points,
such as compressor stall, can be tolerated.

Certainly one of the most useful measuring devices employed in gas
turbine research and development is the straingauge. Small, light, and
accurate straingauges have been developed which can be used for short
periods to 1800°F and for sustained periods up to 1500°F. With the appli-
cation of slip-ring assemblies, straingauges can be employed on rotating
elements of either large or small jet engines. Bonded wire straingauges
are now considered superior to other types. This type of gauge consists
of a fine filament of resistance wire attached to, but electrically insulated
from, the base material by a suitable adhesive. As the base material
strains, either in compression or tension, the strain is transmitted through
the binding material to the gauge. Due to the property of materials to
change their electrical resistance as they are physically strained, the re-
sistance of the wire gauge changes as it is strained. The resistance wire is
not used as a straight line element, but rather in the form of an accu-
rately spaced flat coil or grid. Currently there are in general use three
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methods of fabricating the gauge grid. The first method produces an
etched foil gauge by the use of photographic techniques. The second
method consists in forming the grid by hand winding the sensitive wire
(typically 0.001 inches in diameter) around pins mounted on a jog. The

Thread "Lead wires

Strain-sensitive wire grid ,

Precoat ceramic
* Strain-sensitive wire grid

Cover ceramic Lead wires

Inconel conduit

Ceramic liner

Fig. D,3kk. High temperature straingauge installation on turbine blade. Top, wire
grid held in jig; bottom, gauge mounted on turbine blade.

gauge is flattened and set by squeezing between hard surfaces. The third
method [421 employs a frame (Fig. D,3kk) to hold two small rods in the
proper position. The wire is wound around the rods and the lead wires
held in place and attached. Fine silk thread is then used to tie each wire
loop to the frame so that the rods may be removed. After tightening the
loops by pulling the silk strands, the gauge is ready for cementing in place.
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The thread is removed after the first cover coat of adhesive has been
applied and allowed to set.

The junction between the gauge resistance wire and the remainder of
the electrical circuit is frequently a source of difficulty. In order to im-
prove the relatively low fatigue life, gauges are now constructed with tabs
before being applied to the test part. The tab consists of a 0.001 X A-in.
ribbon folded and welded to the strain wire. Material used to make the
tab is the same as that of the resistance wire in order to avoid thermo-
couple action at the junction.

In preparing to attach a straingauge to a surface which is to be meas-
ured, it is important that the surface be sand blasted and degreased by
either a solvent or washing with a strong detergent. The surface prepa-
ration often makes the difference between failure and success, particularly
in applications on rotating parts. Before the straingauges are mounted to
aluminum alloy materials it is desirable to clean the surface with a de-
tergent and by vapor degreasing after the sand blast operation. Ceramic
cements are in general use for bonding straingauges to metallic surfaces.
The curing cycle for these cements consists of a room temperature dry-
ing cycle of from one to four hours depending upon the atmospheric con-
ditions and the thickness of the coating, which should be less than 0.003
of an inch. Following the air drying the period of heating at from 150 to
175°F for four hours is recommended. The final step is a cure at 600 to
1000°F for a minimum of 30 minutes. In preparing a test specimen a pre-
coat of ceramic cement is applied to the surface and cured as previously
indicated. The straingauge is then laid over the test specimen at the desired
position and held in place with cellulose tape. The cement is brushed over
the grid leaving the ends of the tab exposed for attachment of the lead
wires. Usually two coatings are necessary to completely cover the grid.
The thickness of the ceramic matrix after final curing is between 0.003 and
0.005 in. Lead wires in the form of a 0.001 X 0.016-in. ribbon can be
applied to the airfoil surface in much the same manner. The junction be-
tween lead wire and straingauge tab is made by welding.

Blade contour measurement. It is often desirable to know accurately
the contour shape of compressor or turbine blades. Since the airfoils are
usually quite small, special precautions must be taken to find errors in
construction. A point-by-point check along the airfoil surface can be
made through the use of a small feeler moved along the surface of the
airfoil by means of two micrometer drives mounted at right angles to
each other. When the feeler touches the metal surface, a low voltage
circuit is completed and a signal light flashes. Systems which indicate
changes in electrical capacitance between the model and the measuring
device are used to avoid actual contact. Other methods utilizing optical
leverage systems provide a continuous trace of the surface at a scale
several times that of the model. If the blades can be cut and sections
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removed for examination, a number of optical-enlarging systems are com-
mercially available. One method of sectioning blades and yet retaining
the angular relation between sections is to cast a rectangular volume
of plastic material around the blade before cutting. After cutting and
finishing to the inspection station, the rectangular surfaces of the cast
material can be used to determine the angular relationship between
sections.

SPECIAL TECHNIQUES. In the usual aircraft gas turbine, it is very
difficult to obtain true readings or true average readings of static pres-
sure, static temperature, or direction of the flow between blade rows.
For these reasons, it would appear likely that new approaches to solving
the problems of determining the flow velocity and direction will eventu-
ally evolve. If it were possible, for example, to measure the average veloc-
ity of sound across a circumferential segment equal to one or multiple
blade spacings, this information would be very useful since the average
static temperature could be determined directly. If it were further possi-
ble to measure the average tangential component of flow velocity across
this same segment, the interstage information desired would be readily
obtainable through the use of continuity and equilibrium relations, since
the weight flow, total temperature, and total pressure can ordinarily be
obtained with acceptable accuracy and reliability. The average velocity
of sound and the tangential component of the flow velocity might be
obtained by measuring the time of travel of a sharp sound pulse between
a transmitter and receivers mounted on either side of the transmitter
along the same circumference. The average axial velocity across a rotor
blade row might conceivably be obtained in a similar manner. If it were
possible to measure individual particle velocities, the desired interstage
information would be directly obtainable.

Occasionally, when more usual techniques of investigation fail to pro-
vide the information desired from an experimental setup, special methods
are employed. In this category are means of making air flows visible,
tuft studies, lampblack patterns of boundary layer directions, methods
of determining the point of transition from laminar to turbulent boundary
layers, hot wire anemometers, uncambered and untwisted propellers for
detecting shed vortices, and optical methods to observe density differ-
ences or the path of gases having indices of refraction different from the
primary test medium.

Flow visualization. The method of using lampblack for flow visuali-
zation in cascades, blowers, compressors, or turbines consists of painting
a mixture of lampblack and oil or kerosene over the surface being investi-
gated and conducting the test while the vehicle dries. This method has
been used successfully to make visible the occurrence of boundary layer
transition and separation from the blade surface in cascade tests [4A].
It is useful in compressor testing to give some insight into the effects of
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struts and supports on the over-all flow pattern 1441. In conjunction with
tuft studies, lampblack patterns have been useful in investigating stall-
ing of airfoils [45] and in examining backflow phenomena in centrifugal
compressors [461.

In making tuft studies on stationary blades or walls by photograph-
ing them at an exposure greater than the period of tuft oscillation, an
indication of the degree of turbulence present and the direction of the
mean flow can be obtained. Tufts on rotors may be observed by illumi-
nating them with stroboscopic lights which are triggered by a contactor
on the rotor shaft. Another means of flow visualization is the use of smoke
resulting from hot kerosene vapor [47], smoke candles, or titanium
tetrachloride.

The use of smoke as a quantitative method as well as a means of
observing flow behavior has been markedly advanced by Brown of the
University of Notre Dame [481. A very low turbulence and vibration-free
wind tunnel having a contraction ratio of 48 to 1 for high speeds (up to
220 feet per second) and seven 14 X 18 mesh bronze screens followed by
five 20 X 20 mesh nylon screens is used. The smoke is produced by coking
(burning with insufficient air) grain straw in a closed low pressure vessel.
The smoke is cooled in water-jacketed pipes and filtered before being
introduced upstream of the anti-turbulence screens. Photographs are
taken with 30 microsecond-duration flash lamps. In another facility,
Brown has photographed smoke streamlines through shock waves at low
supersonic speeds. These techniques make possible visual studies at
Reynolds numbers larger by a factor of 10 than older methods and open
a new avenue of approach to many aerodynamic problems.

Schlieren and interferometer methods. The apparatus and techniques
for schlieren photography and interferometer studies in general aero-
dynamics are described in Vol. IX. In the gas turbine field these methods
have been applied to two-dimensional cascades of compressor and turbine
blades. The schlieren method is of definite value and has been applied
extensively. The question arises as to when the interferometer becomes a
practical and worthwhile instrument in turbomachine research and de-
velopment. Ordinarily, the boundary layers and the secondary flows are
much smaller in turbine cascades than in compressor cascades of similar
physical proportions. The use of interferometer techniques might there-
fore be practical for studying the flow through turbine cascades because
two-dimensional flow is more closely approached, so that less distortion
of the fringes due to three-dimensional flows results [49]. Where com-
pressor cascades of high aspect ratio can be tested this method can be of
value [50]. The advantage of obtaining experimental data in this manner
is that the physical condition of the flow in the entire field is obtained.
If the idealized flow over the entire field is known by potential flow
mapping or other methods, a quantitative measure of the difference
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between the real and the ideal flows can be obtained for the complete
flow field.

Unsteady flows. The hot wire anemometer has been of value in
studies of the effects of turbulence and Reynolds number on boundary
layer behavior (see IX, F,1 and F,2). The instrumentation developed for
these investigations is not well suited to the study of the large velocity
fluctuations that occur in axial and centrifugal compressors and turbines.
Under certain conditions of air flow-including those of present interest-
the instantaneous air flow velocity is related to the derivative of the hot
wire potential; consideration of the wire heat capacity might lead one to
expect this result, but a rigorous proof requires a considerable amount of
analysis. The differentiated signal may be amplified (a direct-coupled
amplifier is necessary to avoid phase distortion) and presented on an
oscilloscope. The hot wire probe used in turbulence work may be modi-
fied so as to measure the average and instantaneous directions and mag-
nitudes of air flow under the conditions of large velocity changes that
occur in turbomachines [51].

The hot wire responds (approximately) only to that component of air
velocity perpendicular to the wire axis; the exact behavior with respect to
wire inclination must be determined by calibration. If the velocity pattern
repeats (as happens under steady operating conditions in a compressor)
then velocity observations along the coordinate axes of the system may
be taken in sequence; for transient phenomena, simultaneous measure-
ments are necessary (o'tained by the use of two oscilloscopes with locked
synchronization). In the instrument of [521, the hot wire element is etched
tungsten wire, 1 mm X 0.0088 mm, copper plated at its ends and soldered
to a pair of steel needles which are pressed together during buldering so as
to maintain the wire under 20 gm of tension. At a distance of 5 mm from
the wire, the needles are embedded in dental cement at the end of a long
supporting tube; they are here connected to two pairs of wires, one pair
serving as a current supply for the hot wire and the other pair being used
as potential leads. Also projecting from the tube is a fine wire thermo-
couple used to measure air temperature in the neighborhood of the bot
wire. If a fixed current (from 100 to 200 ma) is passed through the wire,
the potential across it is a measure of the air velocity. Because of a change
in wire characteristics, this potential at a fixed air velocity will vary in
time; it is found, however, that recalibration is not necessary since a
simple cold-resistance measurement allows an automatic compensation
process to be carried out. The analysis of this compensation requires
consideration of such factors as the temperature distribution along the
wire, possible oxidation and plastic flow of the wire, and the mean-value
effect of velocity fluctuations.

The theory used has been checked by a large number of critical tests-
for example, velocity fluctuations at one set of wire orientations may be
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used to calculate the fluctuation at another orientation and this calcu-
lated fluctuation may be compared with experiment. In general, experi-
mental agreement is excellent.

D,4. Two-Dimensional Cascades.
INTRODUCTION. Although there are certain problems that can only

be studied with single-stage or multistage components, such as interstage
matching or the stalling of a complete compressor, there is much infor-
mation that can best be obtained with stationary models in two-dimen-
sional cascade tunnels. The effects of a particular variable can be studied
independently by isolating the model from the maelstrom occurring
within a gas turbine. As instrumentation problems are reduced, flow
conditions can be held constant, and since the cost of operating most
cascade tunnels is low, more detailed measurements can be made. Cas-
cade models and test equipment are simple and usually not highly
stressed, so that the construction is rapid and inexpensive.

The information desired from two-dimensional cascades of airfoils
falls into several distinct categories. It is generally assumed that the work
(lone and the loss incurred by conventionnl compressor and turbine blade
sections will vary in a consistent manner as the geometric and aero-
dynamic parameters of the cascade are varied. The first category of in-
formation desired is the over-all pattern of performance of a particular
family of blade sections.

Once the pattern of performance is established, it becomes of interest
to extend the limits of operation by testing other types of blading.
The particular limits frequently encountered are the relative Mach
number, the static pressure change or axial velocity ratio, and flow
deflection.

There is a need for basic data on boundary layer growth under vary-
ing conditions of pressure gradient, surface curvature, Reynolds number,
and Mach number. There is also a need for information of the effects on
blade performance of practical construction: surface roughness, leading
and trailing edge radii, and deviation from design coordinates.

The primary variables that affect the flow turning angle and losses
through airfoils in cascade are the profile, camber, chord-to-spacing ratio,
inlet angle, angle of attack, static pressure ratio, Mach number, and
Reynolds number. The desired information can be obtained by measur-
ing the pressures or forces exerted on one or more of the test blades, or
by direction and pressure surveys of the flow upstream and downstream
of the blades. To provide data applicable to the design of axial flow com-
pressors and turbines, a series of blade sections having constant thickness
but of varying camber is customarily tested over the range of conditions
to be encountered in application. The effects of section thickness, section
thickness distribution, and mean-line type are investigated separately.
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Such tests provide useful data for the design of gas turbines, but are
ordinarily insufficient to indicate the direction toward improved designs.

The design of a two-dimensional cascade tunnel capable of testing
guide vane, compressor blade, turbine nozzle, or turbine blade sections is
complicated by the number of variables that must be incorporated. A
wide range of entering and leaving air directions and velocities, chord
angle, blade spacing, and axial velocity ratio must be accommodated.
Provision for schlieren observation of the flow and for special instrumen-
tation is desirable in high speed cascades. The many cascades that have
been built differ greatly in general layout, size, systems of changing varia-
bles, and methods of taking measurements. These differences, the use of
different blade types, and methods of presenting data have hindered the
correlation of results from the various sources.

DESIGN OF TEST APPARATUS.

General objective. The general objective in the design of a two-dimen-
sional cascade tunnel is to simulate the flow through a row of an infinite
number of infinitely long blades. This objective could be approached by
using cascades of many very long blades, but the air supply necessary to
drive high speed tunnels of large size would require excessive power. For
this reason, cascades of from 5 to 15 blades of aspect ratios from 2 to 5
are used. The side and end wall boundaries of the test section are treated
with special care to minimize the differences between an infinite cascade
and a cascade of practical size and power. The problems of treating the
cascade boundaries can be separated into three phases: the entrance to
the blade row, the test section, and the exit from the blade row.

The desired condition at the entrance to the test section is that the
flow be uniform in static and total pressures and in wall boundary layer
thickness, and correspond in direction to the flow through an infinite
cascade. Boundary layer removal slots are usually provided on the side
walls a chord length or so upstream of the blades to produce an even
boundary layer thickness. Slots in the end walls (Fig. D,4a [25]) are used
to control the upstream flow direction as well as to reduce or eliminate
the low energy flow entering the cascade. In some tunnels, flexible end
walls are used upstream of the blades to permit shaping the end bounda-
ries to contours simulating streamlines of an infinite cascade.

Two-dimensional flow through the test section of a turbine cascade
can be closely approached with blades of aspect ratio 2 without difficulty.
With compressor cascades, the rapid growth and interaction of the wall
and blade boundary layers in a strong adverse pressure gradient causes
considerable difficulty with blades of aspect ratios as high as 5. Fig. D,4b
t2.1 presents a simplified picture of the flow contraction caused by side
wall boundary layer growth. The static pressure rise through a compressor
blade cascade is reduced because of the effective contraction of the pas-
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Fig. D,4a. Streamline flow through cascades. (a) Infinite cascade (diagram-
matic). (b) Finite cascade with no suction. (c) Finite cascade with suction.
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Fig. D,4b. Effect of boundary layer on streamline flow. (a) Uniform flow in
absence of boundary layer. (b) Contraction of streamlines due to growth of boundary
layer. (c) Effect of contraction on center-line pressure distribution.
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sage, and the pressures over the blade surfaces are affected as illustrated
in Fig. D,4b. Further, the deflection of the flow and the drag and lift of
the blades are very likely to be different than in an infinite cascade. The
use of high aspect ratios reduces but does not eliminate these discrepan-
cies. Boundary layer removal through porous test-section side walls has
been employed in attempts to eliminate these difficulties [531; a close
approach to two-dimensional flow was obtained with compressor blades
of aspect ratio 1.0. A sketch of the construction used in this investigation
is shown in Plate D,4a.

The discharge from the cascade should be uniform in static pressure
and direction. The total pressure should be constant spanwise. With
porous side walls, these requirements pose no particular problems. With
solid test-section walls, a uniform discharge flow is difficult to obtain, and
the case of the infinite cascade can only be approximated. If the tunnel
side walls extend downstream of the blades, the end walls should extend
a similar distance in the direction of the primary flow.

Entrance design. A settling chamber having a cross-sectional area
at least 9 times as large as the test-section area and 1 to 3 diameters in
length is provided. At the upstream end, a honeycomb having a depth-
spacing ratio of from 2 to 6 is employed to remove residual rotation from
the flow source. Several screens of from 30 to 60 mesh, spaced several
inches from the honeycomb and from each other, are installed to equalize
the flow velocity into the entrance. At Langley, contracting the flow area
in two successive steps has been found to be satisfactory for either rec-
tangular or circular settling chambers. The first fairings reduce the pas-
sage width from that of the chamber to the test-section width. Where
the first fairings become parallel, the second set begins, converging to
the test-section height. This construction facilitates moving the second
set of fairings with the tunnel end walls to accommodate the various
tunnel heights required and avoids having a skewed entrance.

Two methods are used for varying the angle between the incoming air
and the axial direction of the cascade. In the simpler method, the inlet
air angle is changed by replacing a section of the tunnel between the
settling chamber and the test blades. This system is used in Langley and
National Gas Turbine Establishment (N.G.T.E.) low speed cascades and
in the United Aircraft Corporation high speed cascade. With this system,
a series of runs at constant inlet angle is normally made. The N.G.T.E.
No. 3 high speed cascade (Fig. D,4c 1251 and Plate D,4b), the Langley
7-inch high speed tunnel (Plate D,4c) and the Deutsche Forschung-
sanstalt fur Luftfahrt (D.F.L.) high speed cascade at Braunschweig
(Fig. D,4d 1541) are fitted with a turntable supporting the profiles.
With this configuration, the blades can remain fixed in relation to
the axial direction of the cascade as the inlet air direction is changed.
As the flow into compressor and turbine rows ordinarily varies in this
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manner, predictions as to compressor and turbine performance over a
range of flow quantity coefficients can be made with less interpolation
from data so obtained. A disadvantage of this system of changing varia-

bles is that either the number of test airfoils or the tunnel height must
change when the inlet angle is changed, thus either interconnecting
mechanisms between the tunnel turntables and end walls must be pro-
vided, or provision made to add or remove blades.

Test blade aspect ratio, size, and number. Factors to be considered in
choosing a suitable size for a cascade tunnel are instrumentation diffi-
culties, the Reynolds number range, and the power required to drive the
tunnel. There are a number of important advantages in the use of test
blades of the same chord as the application is likely to be. Using com-
pressed air as the test fluid, and discharging to atmospheric pressure, the
Reynolds and Mach number relationship which will exist in the cascade
will be very similar to that encounter-d in typical aircraft compressors
at high altitudes and speeds. Further advantages gained in using small
blades lie in the relatively low capacity air-supply compressors and the
lower power required to obtain tests at the usual operating Mach num-
bers with a large number of blades. The blade aspect ratio, usually 2 to 5,
is selected as high as is practical considering power requirements and
blade strength.

The difficulties encountered in studying the flow about small blades
lie in the obtainable accuracy of manufacture and alignment in cascade,
the greater care of flow measurement required to obtain the desired accu-
racy, and the difficulty of obtaining detailed information concerning the
flow about the blades. It is impractical to measure the pressure distribu-
tion about small (less than 2-in. chord) blades by means of static taps in
the surfaces of the blades. This is unfortunate, because a knowledge of
the surface pressures is helpful in developing improved blade shapes and
in selecting optimum operating conditions. Blade surface pressure distri-
butions provide a direct comparison between calculated and actual flows
and, by integration to obtain the lift force, a check on the accuracy of
turning angle and pressure or force measurements.

The modern British tendency has been to test cascades of from 7 to
16 blades having chord lengths of from 0.75 to 1.50 in., and aspect ratios
from 2 to 3. A Reynolds number of about 200,000 is obtained with a
Mach number of 0.5. A turbulence factor, usually of the order of 2.0, is
employed to estimate the effective Reynolds number. The high speed
cascade tunnel of the NACA Langley Laboratory accommodates seven
blades of 3.5-in. chord with aspect ratio of 2.0. This cascade is equipped
with a porous side-walled test section and boundary layer removal slots
about one chord length upstream on all four walls. Use of a diffuser
downstream of the test section for turbine blade testing reduces the
power required. Plate D,4c shows this tunnel partly assembled. Blade
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surface pressures are measured on the central blade by means of static
orifices in the surfaces. Schlieren photographs of the flow can be made
by replacing the porous walls with glass.

The high speed cascade tunnel at D.F.L. Braunschweig (Fig. D,4d)
has a test section 300 mm wide and variable in height from 250 to 500 mm.

Reynolds number of blade
2 3 4 5 6 8 10 15 20X 10 5

400
1.2

3 1.0

E 300N\'
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Pressure at outflow of cascade, kg/cm 2

Fig. D,4e. Reynolds number and Mach number range of the tunnel. Reynolds
number is based on a blade chord c of 60 mm ( 2.5 in.).

The tunnel is enclosed in a large tank which can be evacuated. The attain-
able Mach number and Reynolds number are illustrated in Fig. D,4e,
and further information is presented in Table D,4.

Table D,4. Particulars of the variable density high speed cascade wind tunnel
of the Deutsche Forschungsanstalt ffir Luftfahrt, Braunschweig.

Power installed 1300 kw
Air intake of compressor 30 ms/sec
Head of compressor 7800 m
Pressure ratio 2.14
Maximum Mach number 1.1
Pressure of outflow of cascade (w pressure in the evacuated tank) 0.1 to 1.0 kg/cm'
Maximum dynamic pressure at outflow of cascade 0.5 kg/cm'

The possibilities of applying transonic wind tunnel techniques (slotted,
perforated, or porous walls) to cascade tunnels have been investigated
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only superficially. A cascade of compressor blade sections produces much
stronger disturbances in the air stream than-does the usual aircraft model
in a large transonic wind tunnel. The preliminary results indicate that,
while valuable information can be obtained, the difficulties of obtaining
reliable data in the transonic range are serious. The step between high
speed and transonic cascade testing is about equal in difficulty to the
step between low speed and high speed cascade testing.

A transonic cascade tunnel having a 5 X 20 in. test section has been
designed and constructed by the General Electric Company (Fig. D,4f).
Perforated walls and floors are used to generate transonic flow and to
cancel shock and expansion waves originating from the test airfoils. A
relatively large number (from 12 to 36) of test blades are employed to

--\ I ,- \I ,,

Fig. 1),4f. Transonic cascade tunnel of General Electric Company.

simulate actual entrance conditions into a transonic compressor. Because
the test-section height is fixed, airfoils are removed or added to the test
cascade as the inlet flow angle is varied. Schlieren photographs of the flow
can be taken through glass walls of the tank in which the tunnel is en-
closed to permit independent variation of Mach number and Reynolds
number.

Porous-wall, test-section design. The application of the porous-wall
technique permits a close approach to two-dimensional flow in cascades
of low aspect ratio. In this method, the surface of the side walls from
about one half chord upstream of the test blades to one half chord down-
stream of the blades consists of a permeable material (Plate D,4a). For
high pressure rise cascades, the flexible end walls are also constructed to
permit area suction of the boundary layer. Suction chambers of relatively
large cross section are provided to insure that the pressure is uniform on
the discharge side of the permeable surfaces. The porosity of the surface
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must be such that the desired amount of flow can be drawn through the
walls at a suction chamber pressure lower than the lowest pressure on
the blades. If the exhauster capacity or intake pressure is limited, the
material used as the porous surface must be properly selected. The perme-
ability coefficients and mechanical properties of several materials are pre-
sented in a following discussion.

With the porous test-section side walls in the Langley Aeronautical
Laboratory low speed cascades, the static pressure rise through the
cascade can be controlled, within limits, by the amount of flow drawn
through the permeable walls. When the pressure rise was adjusted to the
two-dimensional value, the pressures on the blade surfaces near the tunnel
wall were similar to those along the tunnel center line, the force obtained
by integrating the pressure distribution nearly equaled the value associ-
at-d with the measured momentum and pressure change across the cas-
cade, and the wakes downstream of the test blades were constant in the
spanwise direction, except for a small region near the wall. The porous-
wall technique has not yet been applied extepsively in published high
speed cascade research, but preliminary results indicate that this method
can be of value in establishing two-dimensional flows and in varying axial
velocity through high speed linear cascades.

Exit section. In order to provide a means to simulate the curved
streamlines that would exist in an infinite cascade at the position of the
end walls, flexible extensions were attached to the rigid end walls approxi-
mately one chord length upstream of the Langley cascades. The flexible
end walls (see Plate D,4d) continued through the test section and about
one chord length downstream of the test cascade. The curvature of these
extensions could be varied during operation of the facility. Usually a gap
equal to about half the blade spacing is allowed between the end airfoils
and the flexible walls. An experienced operator can adjust the end con-
ditions to achieve uniform entering and exit flow in a few minutes. The
direction of the flexible extensions downstream of the cascade is set
parallel to the direction of the exit flow.

To eliminate the time required to survey the exit flow in order to
measure the exit direction, in United Aircraft Corporation cascades the
discharge direction of the flow is measured by the angle of two parallel
exit plates, or tailboards, ten chords long, hinged to the trailing edges of
the outer blades. Static pressure taps are located parallel to the cascade
one and one-half chords downstream of the blade trailing edges. During
operation, the exit plates are revolved until an angle is found at which,
ideally, the static pressures are the same at all orifice locations. Good
comparisons between the values measured by point-to-point surveys and
those recorded by the tailboards have been obtained for all but high inlet
angles. This technique has been used with good results on turbine blade
cascades in the Langley 7-in. high speed cascade [551.
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Force measurement. In the early researches of Christiani, Harris and
Fairthorne, and Keller, the forces exerted by the central airfoil of the

test cascade were measured by standard wind tunnel balance methods.
In this system the central airfoil is supported separately from the walls
of the test section. As the velocity into the cascade is increased to the test
value, the floating airfoil moves in response to the forces being exerted.
The force necessary to restore the test blade to its original position can be
measured. By measuring the required force in two directions, the resultant
force can be obtained and resolved into desired components. In the very
thorough investigation of a guide vane cascade carried out by Sawyer 143]
under the guidance of Ackeret, an application of the Amsler principle was
employed to construct a balance free from the effects of static friction.
According to Amsler, there is no static friction parallel to the axis of a
cylindrical bearing when the shaft rotates. In Sawyer's balance the central
airfoil was attached to a platform supported by bearings riding on two
rotating shafts (Fig. D,4g and Plate D,4e). Thus, a force exerted on the
platform parallel to the shaft axes can be measured with little error due to
friction. Arrangement is made to permit measuring the force in any direc-
tion in the plane of the shaft axes by rotating the platform assembly,
so that the shafts are parallel to the desired direction.

Porous materials. Porous materials have found several important
uses in connection with experimental techniques of flow through turbines
and compressors. One significant application of porous materials is in
two-dimensional cascade testing. Porous materials have been used as
surfaces of blades, for area suction and for sweat cooling. These surfaces
are more easily applied to stationary blades, such as stators and turbine
nozzles, than to rotating blades since the mechanical problems are less
complex. Area suction has another application in diffusers attempt-
ing a high pressure rise per unit length, where boundary layer separa-
tion limits the rate and amount of diffusion that can be accomplished
efficiently.

A permeability coefficient, derived from Darcy's law, can be used as
an approximate measure of the porosities of the different types of porous
materials:

qpoIAL

0 f _ p )po

where a = permeability coefficient (in.2 )
q = weight rate of flow per unit area (lb/in.2 /sec)

pi = pressure entering sample (lb/in.2 )
po = pressure leaving sample (lb/in.)
L = thickness of the sample (in.)
)A= dynamic viscosity of the fluid (lb-sec/in.2 )

po = weight of the fluid per unit volume (lb/in.')
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Fig. D,4g. Schematic drawing of cascade balance (simplified), showing steps in
development. A, axially "floating" platform of basic unit; B, shaft carrier plate;
C, foundation plate; D, auxiliary plate upon which blade is mounted; E, cylinder
rigidly fixed to foundation plate C; F, taper pins locking D to E; G, pulley; R, oil
reservoirs for main bearing lubrication.
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Since this relation is valid only for viscous laminar flows of a gas
through a porous aiedium, all permeability coefficients to be mentioned
herein apply in that range.

The types of porous materials which have been used or investigated
in attempting to find suitable porous walls for cascade testing include the
following:

1. woven meshes, metallic or fabric
2. mechanical perforated metal screens
3. sintered metal particles
4. electro-deposited metal screens
5. porous plastic or glass

Woven meshes, metallic or fabric, are easy to produce and inexpensive:
the metallic meshes and screens have pioved to be the most suitable be-
cause of their workability and smoothness. A commercially available ma-
terial, twill-dutch double-weave filter cloth, usually woven of Monel wire,
having 250 fill wires of 0.008-in. diameter per inch and 30 warp wires of
0.010-in. diameter per inch was found to be very satisfactory for porous
walls when commercially calendered from the as-woven thickness of
0.027 in. to 0.018 in. Porous materials of this type are relatively homo-
geneous in character and have permeability coefficients which range from
0.2 X 10- 10 in.2 to 1.1 X 10-10 in.2 at a thickness of 0.020 in.

The sintered materials require a more involved process of manufacture
including the production of fine particles of desired shape, grading, mix-
ing with a fusing material, and subjecting the mixture to temperatures
and pressure. In small lots, this process makes for an expensive product.
Some sintered materials have a rather smooth surface, but the pores or
openings are not as homogeneous in size and shape as those in the woven,
perforated, and electro-deposited materials. The porosity of sintered ma-
terials tend toward lower values with permeability coefficients ranging
from 1.5 X 10-10 in.2 to 15 X 10-10 in.2 at a thickness of . in.

The mechanically perforated metals may be produced with a very
wide range of sizes and shapes of perforations; they are fairly homogene-
ous and inexpensive, having permeability coefficients ranging roughly
from 0.2 X 10- 1° in.2 to 4.0 X 10-10 at a thickness of 0.020 in. Hammer-
ing and rolling processes have been used successfully on perforated ma-
terials to reduce the porosity and increase the surface smoothness.

Electro-deposited porous materials are the most uniform of the
aforementioned porous matorials. Due to the method of manufacture,
the thickness of fine meshes of this porous material is limited to rather
small values-usually less than 0.025 in.; this means that, for most
practical applications, electro-deposited porous materials need a sup-
porting perforated material. The porosities of this type of material
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tend toward higher values with permeability coefficients ranging from
1.0 X 10-10 in.' to 20 X 10- 10 in.' at a thickness of 0.010 in.

Porous plastic materials have teen little studied for aerodynamic ap-
plications; the openings tend to vary in size much the same as sintered
materials, although smooth surfaces and good machineability can be ob-
tained. Photosensitive glass has been developed permitting etching of
0.030-in. diameter holes in 0.20-in. thick glass plates. This material holds
promise of allowing schlieren photographs to be made through porous
surfaces.

SUPERSONIC CASCADES.

General di8cussion. Sections for supersonic compressor blades must
be tested at the Mach numbers of operation, and preferably at similar
Reynolds numbers. Fewer blades are required than for high speed cascade
tests, but higher pressure ratio air supply equipment is required. Because
supersonic compressors have not demonstrated high efficiency, no sys-
tematic cascade tests of supersonic compressor blade sections have yet
been made using suitable test apparatus. There is reason to believe that
supersonic compressors will benefit as much from such research as sub-
sonic compressors have.

Supersonic cascade tunnels can be considered to be of two general
types, one having the test-section entrance open to the atmosphere and
the other having a completely enclosed test section. The open jet type is
easier to adjust because the test section can be constructed as a separate
unit and mounted independently. This type of cascade (Plate D,4f) is
ordinarily used when the air supply is a high pressure storage tank and
there is no necessity of recovering the dynamic pressure of the stream.
Open jet cascades must be relatively small to permit sufficient running
time, but the Reynolds numbers are high because of the high static
pressure.

Closed test-section cascades (Plate D,4g and D,4h) are used when
continuous operation is intended. Because the circuit is closed, low pres-
sure, and hence lower power operation, are possible. The pressure level
and therefore the Reynolds number can be varied independently of the
Mach number. Greater mechanical complication is required to maintain
a continuous flow path while permitting some flexibility of test-section
geometry. Either type of test section can be used to test shock-in-rotor
or impulse rotor blade sections or supersonic stator blade sections.

SUPERSONIC CASCADE TUNNEL DESIGN. The component parts of a
supersonic cascade tunnel are similar in function to those of a subsonic
cascade; each requires the use of a settling chamber, an accelerating
nozzle, and a test section wherein the model blades are mounted. The
supersonic cascade differs in two essential respects from its subsonic
counterpart: (1) the need of a throttle downstream of the shock-corn-

( 232 )



D,4 • TWO-DIMENSIONAL CASCADES

pression rotor and stator sections to provide the necessary back pressure

to position the normal shock within the blade passages; and (2) the im-
mobility of the nozzle floors with respect to each other when, as is usual,

the nozzle is designed for only one Mach number. However, in the super-
sonic case, it is no longer necessary to set the nozzle depth equal to an
integral number of blade pitch spacings multiplied by the cosine of the
air inlet angle, since there may be no mutual interference effects between
leading portions of supersonic profiles when at their design incidence.
Therefore it is possible to construct a cascade of only two blades to deter-

mine the behavior of the flow within the passage and measure the basic
performance parameters, total pressure loss, and exit Mach number and
direction. Usually four or more blade sections are used to insure that
representative conditions have been established. The test models are usu-

ally mounted between glass side walls to permit schlieren or interfer-
ometer photographs of the flow to be made.

To insure the proper functioning of a supersonic cascade, the test
section must be designed so that the starting area contraction ratio is
not exceeded in any of the individual flow passages formed b the cascade
blades. This is especially true for shock-in-rotor blade sections in which
the maximum permissible area contraction is desired to obtain the lowest
shock losses. Extreme care must be exercised in mounting the component
blades of the cascade, since one slightly misaligned or incorrectly spaced
blade can disrupt the entire flow or completely choke the nozzle. The
phenonenon of choking (the inability to force the normal shock into the
cascade) controls the lowest supersonic Mach number for which the cas-
cade is operable. Supersonic compressor blade sections are generally tested
at their design Mach number or slightly higher values representative of
overspeed compressor operation. Testing at these higher Mach numbers
is facilitated (for sections whose velocity normal to the cascade leading
edge is subsonic) by merely rotating the entire cascade so that the flow is
expanded about the leading edge of the foremost blade. The upper Mach
number limit is reached when the inclination of the most forward blade
is such that a detached shock is formed or the reflection of the expansion
waves from the opposite nozzle wall extends upstream of the cascade.
Similarly the test Mach number may be reduced through the use of
oblique compression shocks from the leading blade. Thus it is not neces-
sary to have a great number of separate nozzles or contour changes with
flexible walls in order to test over a range of Mach numbers. The method
used to raise the back pressure behind a rotatable supersonic cascade
requires attention. With a fixed wall fairing the area contraction between
the end blades and the fairing must be considerably less than that be-
tween the test blades, because of the boundary layers. Increasing the
pressure ratio across the test section by reducing the speed of the air
supply compressor or by contracting the passage well downstream of the
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cascade will force a normal shock through the passages formed by the
outermost blades and the nozzle wall fairing, before full throttling can be

accomplished within the cascade. For this reason a throttle that affects
the flow in only the central passages is necessary to obtain maximum
pressure recovery in the test model.

D,5. Three-Dimensional or Annular Cascades. An intermediate
facility between the two-dimensional cascade tunnel and the single-stage
test compressor is the three-dimensional cascade. In this apparatus a
complete blade row, either specially constructed or a rotor or stator from
a multistage machine, is subjected to a flow similar to that encountered
in operation. Thus, effects not simulated in the linear cascade can be
studied, but under more closely controllable and widely variable condi-
tions than in the complete engine. A primary advantage is the ability to
provide more complete instrumentation than in the actual machine.
Boundary layer flows and end effects are not the same as in running
rotors or unshrouded stators. Nevertheless, again applying the principle
of isolating separate effects, this device can provide information concern-
ing the behavior of blade profiles of known two-dimensional performance
in three-dimensional arrangement. The annular cascade thus can be a

useful tool to the gas turbine researcher and its results of value to the
designer.

There are several reasons why three-dimensional and annular cascades
are a natural extension of two-dimensional cascades. These facilities retain
part of the ease of obtaining detailed measurements and the simplicity of
model construction of the two-dimensional cascade tunnel. The study of a
number of additional variables that occur in turbomachines is permitted:
(1) the effects of a spanwise (radial) variation of circulation on the turn-
ing angle and loss, (2) the boundary layer flow on guide vanes and stators
may be observed, and (3) the differences in blade section performance
between two and three dimensions. Considerable differences can exist
between the performance of given blade sections in a two-dimensional
cascade and in a three-dimensional blade row. For example, it would seem
quite reasonable to assume that the flow in a guide vane having an appre-
ciable pressure drop would be little affected by Reynolds number, Mach
number, or three-dimensional effects. Quite frequently, however, it is dis-
covered that flow conditions leaving three-dimensional guide vanes are
quite different than predicted on the basis of two-dimensional cascade
tests of the same sections.

Because of the necessity for spanwise surveys of flow conditions, the
three-dimensional cascade does not lend itself to investigations wherein
the effects of a number of geometric variables are determined over a
range of aerodynamic parameters. Three-dimensional or annular cascades
appear to be best suited for detailed investigations of flows which cannot
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be adequately simulated in two-dimensional cascades and as a source of
basic information to extend existing theories.

In addition to being a logical extension of the two-dimensional cas-
cade, three-dimensional and annular cascades exhibit unique features
which permit conditions to be established that cannot be accomplished
or can only be accomplished with difficulty in two-dimensional cascades.
An excellent example is the use of an annular cascade to study rotating
stall. Propagating stalls have been produced in two-dimensional cascades.
Study of the phenomena was necessarily restricted by the finite length of
the cascade. Three-dimensional cascades can more readily be used to
simulate transonic flow into a blade row. In two-dimensional cascades,
the wave pattern is not the same upstream of all the blades due to the
finite number of blades. This can be readily seen when it is considered
that the blade nearest to the settling chamber will have only its own bow
wave upstream of it, while the second blade will have two waves, and
so on. If a sufficiently large number of blades can be provided in a two-
dimensional cascade, this problem can be minimized, but in a three-
dimensional cascade it can be eliminated entirely.

Compressor and turbine blade cascades. A number of annular tunnels
designed to permit tests of compressor and turbine blade cascades have
been built in the United States. In those with which the author is familiar,
the general plan of the several cascades is quite similar. The intent was to
establish , rotating flow of constant angular momentum entering the test
section. In order to avoid wakes from swirl vanes near the test blades,
the vanes were placed well upstream and in a region of low velocity to
avoid an extended region of high velocity flow with attendant wall
boundary layer growth.

The tangential velocity that must be imparted to the flow by the
swirl vanes can be reduced by placing the vanes at a radius larger than
that of the blades to be studied. The design of an annular cascade built
at the NACA Langley Laboratory is illustrated in Fig. D,5. This tunnel is
an induction type, the motive power being compressed air. The main
stream is drawn from the atmosphere through bellmouthed entrance
rings, past a closely spaced straightening grid, caused to rotate by the
swirl vanes, then accelerated tangentially and axially to the test section.
The flow direction and pressures were measured across the annulus at
several -circumferential positions to insure uniformity of entering condi-
tions. The test airfoils can be equipped with static orifices on their sur-
faces. A ring carrying direction- and pressure-measuring instruments is
provided downstream from the blades. The ring can be rotated to permit
readings at any circumferential position in addition to the usual radial
traverse.

The swirl vanes are adjustable in unison. Several sets of different
cambers are provided to cover the desired range, estimated to be inlet
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angles, 0, from 0 to 75 . With small values of 0, from 0 to 300, the flow
at the test blades was quite uniform. With larger angles, thick boundary
layers, particularly on the inner casing, were present. This difficulty was
encountered in the similar annular cascades previously mentioned. At the
NACA Lewis Laboratory, somewhat improved flows were obtained by
suction slots located in the entrance cones. The United Aircraft Research
Division improved their three-dimensional rig by providing an annular
slot about one-fourth of the tunnel span wide, just upstream of the test
section. The flow on the inner casing was permitted to pass into this
opening. As yet no adequate means of obtaining flow with a high inlet
angle and thin boundary layers at the test section of annular cascades
is at hand.

tAdJltoble swrl bladces

M.,ng kwt Adjustable test blades

O~fwet S~pt n nula..,~ir a., ot Surtvey stationl I High pcesse air s l- .

Scale. in.

Fig. D,5. Langley Laboratory annular cascade.

Guide and nozzle vane cascades. Three-dimensional cascades inteided
primarily for the study of guide vanes and turbine nozzles have been
operated successfully in Germany, England, and the United States. The
flow into guide vanes and nozzles ordinarily has zero or very small incli-
nation to the engine axis; therefore provision to swirl the flow upstream
of the blades is unnecessary. The problem of producing uniform flow into
the test section is considerably simplified. In the British vortex wind
tunnel and the Langley guide-vane tunnel, both low speed tunnels, axial
entry is used. Provision in the former is made to permit radial surveys
at several stations upstream and downstream of the blades. In the
Langley tunnel, a rotatable ring downstream of the test section makes
surveying a sector of the flow possible. Many readings are required when
one or more complete passages are studied. Yaw meters of the usual type
tend to be in error when subjected to flows having total pressure gradients.
With combination probes-and they are widely used -an error in direc-
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tion results in an error in the static pressure indication because of mis-
alignment. It is therefore desirable to survey a representative sector of
the flow so that valid readings can be selected.

An annular cascade was constructed in Germany to test compressor
guide vanes. In order to vary the inlet air direction to some extent, a
radial flow section was incorporated in the inlet. The design was quite
similar to the annular cascades previously described. One difference was
that the entry to the tunnel was axial rather than radial. This feature
would seem detrimental, for greater wetted surface results and the flow
must make an additional 0 turn. Insufficient data is provided to evalu-
ate the performance of this inlet configuration. The test blades were
mounted on a hub attached to a central shaft supported by bearings.
The test assembly was prevented from rotating by a torque arm fastened
to the shaft at one end and resting on a weighing scale at the other. The
tip diameter of the blades was 8.66 in. and the hub-to-tip ratio was 0.73.
A rather low aspect ratio, about 0.6, wis used. A two-stage axial flow
compressor was used to draw air through the cascade. Test velocities
up to 820 ft/sec could be obtained with this apparatus [561.

At the NACA Lewis Laboratory, turbine nozzle blades have been
tested in a sector of an annular cascade (Plate D,5). The outer shroud
diameter is 23.4 in. and the inner shroud diameter is 18.0 in. Five blades
of about 2-in. chord were mounted in the annular sector. Measurements
of the exit flow direction and total and static pressure were made at 11
circumferential stations and at 5 to 9 radial positions for total-to-dis-
charge satic pressure ratios from 1.124 to 1.682. The static pressure dis-
tributions about the blade surfaces were measured at three diameters.

Good agreement between the surface velocities calculated by an
approximation of the stream filament method and the measured values
was observed at speeds near the critical velocity ratio on the convex
surface 1571.

D,6. Single-Stage Compressors.
General discussion. Axial flow compressor rotors are tested alone or

with stators to obtain information not easily or accurately obtainable
from multistage machines. Single rotors or stages are used to provide
design data for complete machines, blade-section performance data for
comparison with linear and annular cascade results, and to study three-
dimensional, tip clearance, aspect ratio, Reynolds number, and Mach
number effects under known steady flow conditions.

Single-stage axial flow compressors in laboratories of gas turbine
manufacturers are usually tested at full scale and high speed. The infor-
mation obtained can be applied to gas turbine design with a minimum
of extrapolation or correction. Closed circuits, intakes through turbines
to refrigerate the air, or auxiliary facilities to supply cold air are used.
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Exhausters to lower the pressure are employed so that flight Reynolds
numbers may be simulated. Testing at reduced pressures directly lowers
the power required to drive the compressor. The blade stresses due to the
air loads are also lowered.

The information usually desired from tests of single rotors or from
single-stage compressors consists of the efficiency and rate of energy trans-
fer at various combinations of flow quantity and rotational speed under
standard entering conditions. These general performance values are ob-
tained by calculation from measured values of fluid direction, total tem-
perature, total and static pressure upstream and downstream of the
various elements under test, torque, rotational speed, and flowmeter
pressure drop.

Because of centrifugal force effects, flows through blade tip clearances,
secondary flows, and the difference in the boundary layer entering a rotor
or stator compared to that entering a cascade of airfoils, the flow through
compressor rotor and stator blades is not likely to be identical to that
through a cascade, even though the same blade geometry and inlet air
directions are considered.

In order to examine the differences, and to obtain more detailed infor-
mation concerning flow through rotating blades, special devices have been
developed. The hot wire anemometer has been applied to this problem
[511 although few results have appeared in the literature. One major
difficulty is the extremely rapid response required of the equipment if
useful results from high speed tests are to be obtained. For example,
consider a rotor having 50 blades running at 6000 rpm. A stationary
instrument will then have 5000 blade wakes impinging upon it per second.
The width of a typical wake may be of the spacing between wakes,
so that the time of passing is 1/25,000 second. If the instrument is to pro-
duce a signal proportional to the velocities in the wakes with minimum
fidelity, perhaps 5 to 10 points per wake, it would have to respond linearly
at frequencies in the range from 125,000 to 250,000 cps. This is very far
beyond the capabilities of any hot wire-amplifier combination known to
the author. Qualitative information can be obtained under conditions
similar to those of the example, however, and quantitative results can be
obtained at lower wake-impingement rates.

Another method of studying the flow through running blades is to
permit probes and orifices to rotate with the wheel. In this manner, the
blade surface pressures and the regions of total pressure loss can be meas-
ured. These readings can be taken most readily by means of sealed cells
to permit the transfer of pressures from the rotating system to stationary
manometers. Several transfer devices have been developed. These can be
separated into two groups, single-cell units which transfer pressure axially
and multicell devices which transfer radially from the axis of rotation.
Mercury labyrinths and rubber seals have been applied to both groups.
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A mercury-sealed, single-cell device used by Muhlemann 158] for
measuring wake distributions is shown in Fig. D,6a. The device was used
successfully in the speed range from 0 to 1000 rpm. Before a test, the
single Pitot tube used was set at the desired radius in the proper direc-
tion. While the test was in progress, the tube was traversed across the
wake by a friction drive, through an electromagnetically operated clutch
and a system of worm gears to a lead screw. The position of the wake
was determined by an electric counter which indirectly recorded the revo-
lutions of the lead screw. A rubber-sealed, single-cell device developed by

Rotating part

Pressurecconnnctio

-Lubricant

|device-fixed

Fi. cDetail of seal

Wese fa ressure conection

i ci w a Selector device Waste lubricant\Open
Closed- Peg on back of latch

Rubber pod to seal inactive pressure holes

Fig. D,6b. Selector mechanism and seal.

Weske [59] for measuring blade pressure distributions and wakes is shown
in Fig. D,6b. For measuring pressure distributions, this device was used
in conjunction with a selector mechanism consisting of an escapement
and friction drive to connect the cell to one of the blade pressure orifices.

For wake measurements, the survey instrument was moved across the
wake by a spring-loaded lever and pulley system. Radial adjustment was
made before each test.

In order to reduce the running time where the power requirements
are high or to increase the reliability of the results by taking all the
measurements at the same instant, a multicell transfer device is desirable.
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A mercury-sealed multicell device was designed at the Langley Labora-
tory of the NACA [60]. This device, presented schematically in Fig. D,6c

is partially filled with mercury while rotating. The grooves on the rotat-

ing disks drive the mercury out into spinning annular seals capable of

sustaining large pressure differences. Since the transfer is in a radial
direction, as many cells as desired can be placed along the axis. The sta-
tionary casing is enclosed in a water jacket to prevent overheating due to

f!id and bearing friction. The 24-cell unit shown in Plate D,6a was used
successfully up to 2500 rpm.

A rubber-sealed multicell device developed by Davey [611 is believed
to be superior to the other devices in simplicity and ease of maintenance.

Tubing to manometer

MercuryStationary casing

Rotating shaft

Tubing to orifice

Axis of rotation

Fig. D,6c. Schematic diagram of pressure transfer element.

It consists of a row of commercially available ball bearings having built-in
flexible dust covers (Fig. D,6d). The device has been run 10 hours at
6000 rpm without any difficulties. At 4000 rpm, a seal life of from 30 to
90 hours has been realized. A life of 500 hours is predicted at speeds

below 2200 rpm. A somewhat similar device is employed by Leist [62].
Another method of measuring many pressures on a rotor is to use a

commercially available tube-switching device, the scanivalve. Locating
the pressure sampling unit on the axis of rotation permits measuring the
pressures of 48 orifices. By proper arrangement, only one seal is required
between the rotating parts and the indicating system. Since switching
from one tube to the next is accomplished by electrical signal through
slip rings to the scanivalve motor, readings can be taken as slowly as the
operator desires or rapidly, up to about 24 readings per minute. The pres-
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sure reading is indicated from stationary equipment, so a wide variety of
meters, including standard manometers can be used. In bench tests,
satisfactory operation of this system has been obtained at speeds up to
10,000 rpm.

At NACA Langley, a 42-in. tip diameter test compressor equipped
with a 24-cell mercury pressure transfer device is used in the study of
secondary flows and boundary layer behavior in rotating blade rows, and
to compare cascade and rotor blade performance. Guide vanes turning
the flow in a direction opposed to that of the rotor are used. The dynamic
pressure distribution over NACA 65-series blade surfaces in a two-dimen-
sional cascade tunnel and in the rotor are presented in Fig. D,6e [68].
The comparison indicates that the blades sections operate similarly in
cascade and in a vortex-type rotor at design conditions. The relationship
between the angle of attack and the fluid turning angle of the blades in
cascade was similar to that in the compressor at the mean diameter and
at the outboard section one inch from the outer case. At the inboard
station of the rotor, one inch from the inner casing, the turning angle
increased 1.50 for a 1 increase of angle of attack. The rate interpolated
from cascade tests would be one third of this. At flow coefficients other
than design, secondary flow and boundary layer centrifuging effects
caused the blades to perform differently in the compressor than in the
cascade.

Centrifugal compre88ors. The NACA Subcommittee on Supercharger
Compressors has recommended standard procedures for rating and test-
ing centrifugal compressors [1]. The test setups described are adequate
for superchargers which get their flow through small ducts of consider-
able length. For valid testing of centrifugal compressors for aircraft gas
turbines, settling chambers similar to those recommended for axial flow
compressors should be used. Sometimes the attachment of a plenum
chamber to the compressor intake is impractical, as with double-entry
units. In this case the room in which the test bed is located can be sealed
except for an air intake and an exhaust discharge. The air flow can be
metered at the intake to the room which acts as a large settling chamber.
A single venturi has been found to be more suitable than several. Walker
has noted in [641 that the air must not impinge on the engine predomi-
nantly from either the fore or aft direction; otherwise an error in gross
thrust reading will result. Untreated brick or concrete walls are slightly
porous, and enough leakage can occur even through sealed walls to cause
a significant weight flow error.

In testing impellers alone, a vaneless radial diffuser is frequently used.
The inlet conditions are determined by total temperature and total and
static pressure measurements in the inlet pipe two diameters upstream
of the impeller. Similar measurements are made at the impeller discharge.
If the over-all pressure is desired, the instruments in the diffuser discharge
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must be withdrawn, as the performance of vaneless diffusers has been
shown to be markedly affected by such apparently minor obstructions.
The static pressure distribution along the surface of the impeller casing
and the diffuser provide an indication of flow conditions.

The over-all pressure ratio and the efficiency of a complete compressor
are determined from inlet pipe readings and from measurements in the
discharge pipes 12 diameters downstream of the collector. The installation
of a large capacity centrifugal compressor is shown in Plate D,6b. An air-
tight steel tank 6 feet in diameter and 131 feet in length is used as a
stagnation chamber.

At the NACA Lewis Laboratory, a 48-in. tip diameter compressor has
been constructed (Plate D,6c) to provide detailed information as to the
actual flows within centrifugal compressor impellers. By means of a multi-
cell pressure transfer device, the total and static pressures of the flow at
many points throughout the passages can be obtained. The impeller vanes
are removable to facilitate instrumentation and to permit varying the
vane shape. The maximum tip speed attainable with this rig is about
1000 ft/sec but, with an intensively instrumented impeller, the maximu
running speed is kept below 700 ft/sec.

D,7. Component Testing of Multistage Axial Flow Compressors.
As mentioned in Art. 1, there are a number of approaches leading to the
design of axial flow compressors. However, no matter what design method
is used, in the present state of the art the operating characteristics of a
compressor, which is significantly different from its predecessors, are diffi-
cult to predict. This is particularly true in the starting range for high
pressure ratio compressors. The compressor performance at low speeds
must be known in order to determine the power and speed of the crank-
ing motor and whether special provisions must be made to permit the
engine to start and idle.

The necessary information is best obtained by testing full scale com-
pressors under simulated conditions of actual operation. To accomplish
full scale, full speed testing, drive motors or steam turbines of up to
50,000 horsepower are required. Refrigerated, low pressure air sources are
necessary to simulate flow conditions encountered in high altitude flight.

Performance measurements. The values necessary to define the over-
all compressor performance are the pressure ratio, the weight flow, and
Lhe efficiency over the attainable range of weight flows at rotational speeds
from 10 per cent to 115 per cent design. The simulation of temperatures
and pressures encountered in high altitude flight is very desirable. The
over-all pressure ratio can be obtained from total pressure surveys in the
entrance and exit ducts. The air weight flow measurements are usually
made in the intake piping by standard metering methods. The compressor
efficiency can be calculated from measurements of temperature, pressure,
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and humidity in the intake settling chamber, and temperature and pres-
sure surveys in the discharge annulus. Shaft power measurements are
useful in estimating turbine torque requirements. When corrected for
bearing, seal, and windage losses, power input measurements provide a
check on efficiencies obtained by temperature surveys. The NACA Sub-
committee on Compressors has recommended standard procedures for
rating and testing multistage axial flow compressors [1]. Suitable instru-
ments similar to those described in Art. 3 are also presented.

Research measurements. In order to compare a rotor or stator tested
as a single stage with the performance of a similar unit in a multistage
compressor, the velocity and direction of the flow in a representative
sector of the particular annulus should be ascertained. To accomplish
this, the total and static pressure and the temperature and direction of
the flow must be measured or deduced. Total temperature and pressure
and yaw probes can be made small and rigid enough to be inserted into
the stator blades. The static pressure along the outer casing is easily ob-
tained. When stators having inner shrouds are used, the static pressures
at the hub can be measured without insurmountable difficulty by running
leads through the blades. A photograph of a compressor stator illustrating
the installation of total and static pressure tubes in a stator assembly is
presented in Plate D,7a, The static pressure at radial positions between
the inner and outer casings is more difficult to measure due to the curva-
ture of the flow and the resulting static pressure gradients in the circum-
ferential direction.

Little information is available to indicate the proper locations of static
pressure orifices in compressor casings. Sawyer [431 has presented the pres-
sure field measured at the side wall of a low speed guide-vane cascade.
The best measure of the upstream static pressure in this case (staying
within 5 per cent chord in the axial direction) would be obtained by an
orifice 20 per cent of the blade spacing from the concave surface and
5 per cent chord upstream of the leading edge. The optimum downstream
position would be 40 per cent of the spacing from the concave surface
and in line with the trailing edges. Westphal and Dunavant [65] obtained
the streamline and equipotential line distributions through typical tur-
bine blades using a wire-mesh potential-flow-plotting device. In the dis-
tributions presented and from other turbine flow plots obtained by this
method, the optimum position for an orifice to measure upstream static
pressure would be about 35 per cent of the spacing from the concave sur-
face, in line with the leading edges. Near the trailing edges, the static
pressure appears to be quite uniform across the passage and a region in
the middle is suggested as the logical location to measure the downstream
static pressure.

The local dynamic pressure ratios q/q1 in the field of flow about a two-
dimensional cascade of NACA 65-series compressor blade sections are
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presented in Fig. D,7a. For this cascade the best location for a static
pressure orifice to measure the upstream static pressure would be about
40 per cent of the blade spacing from the concave surface. A similar loca-
tion would be optimum in the plane of the trailing edges to observe the
exit static pressure. Although the position should change as the uir angles,
blade camber, and geometry are varied, it is estimated from the foregoing
that the proper location for static pressure orifices near compressor blades
is probably nearer to the concave surface than to the convex. As smaller
pressure gradients usually occur in the trailing edge region, more reliable
readings can be obtained of the downstream rather than the upstream
static pressure. A close approach to the static pressure entering the tip
section of a rotor blade row can be obtained from an orifice placed in the

1.5

Fig. D,7a. Ratio of local dynamic pressure to entering dynamic pressure.

outer casing about 30 per cent chord downstream from the rotor tip
leading edge.

Investigation of interstage flows. A method of estimating the flow dis-
tribution downstream of axial flow compressor rotors or stators when a
minimum of experimental data is available has been presented in [66].
If the weight flow, total temperature, and total pressure can be meas-
ured, and the flow direction can be deduced or measured across the radial
height of the compressor annulus, the static pressure and axial velocity
distribution can be determined. Iterative or trial-and-error solutions are
required, however, and the effect of low energy regions in reducing the
effective flow area can only be approximated, unless detailed survey data
are available. A method of measuring or deducing the radial static pres-
sure distribution directly would be advantageous.

A method of obtaining the static pressure at desired stations suggested
by observations of compressor cascade and rotor blade pressure distribu-
tions follows: A given cascade, that is, similar blades whose geometrical
relation to each other is fixed, exhibit the rather surprising property that
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the ratio between the velocity over the forward portion of the convex
surface at one point and the entering velocity remain the same as the
inlet air direction changes. This phenomenon is borne out strikingly in
Fig. D,7b [681, which presents the pressure distribution observed over
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Fig. D,7b. Pressure distributions at various angles of attack. (Mean section.)

the surfaces of a compressor rotor tested at low speeds. Examination of
pressure distribution obtained from compressor airfoils in low speed cas-
cades substantiates this happening; the position of constant velocity ratio
varies from one cascade arrangement to another, but, for one cascade,
a point on the convex surface somewhere between 15 and 25 per cent
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chord from the leading edge maintains the same velocity ratio as the
inlet angle is varied. This phenomenon has not yet been confirmed nor
denied at high speeds; however, if this behavior continues to exist under
compressible flow conditions, it would be possible to determine dynamic
and static pressures at desired stations by orifices located at the proper
chordwise position of the stator blades.

Research compressors. The details of flow through multistage com-
pressors are not fully known. The best theoretical treatments presently
available are incapable of dealing with the compressible, three-dimen-
sional, viscous flows through the blade rows. There is a great need for
thorough research on the radial flows, boundary layer growth on the blade
and casing surfaces, interference between adjacent rows and stages, and
stalling and surging mechanisms within turbomachines. Many of these
phenomena can be readily investigated if incompressible flows are em-
ployed. If the effect of Mach number is neglected, multistage compressors
can be constructed and studied with modest, shop and experimental equip-
ment. Because of the continuing need for information and the many ad-
vantages that accrue from disregarding the Mach number similarity re-
quirement, a number of low speed multistage compressors have been built
in the United States and many other countries.

In order to reduce the power and rotational speed required, several
methods can be employed to test multistage compressors under conditions
satisfying several or all of the significant similarity coefficients. The sys-
tem of using gases having low sound velocities in place of air has been
discussed in Art. 6. Relatively large compressors operating with atmos-
pheric inlet attain flight Reynolds numbers at low rotational speed. Small
compressors running in water experience Reynolds numbers of large air-
craft components at very low rotational speeds and small powers.

An ideal test compressor would be sufficiently flexible to be used in
the study of many of the problems now associated with multistage axial
flow compressors:

1. The relative advantage of various types of tangential velocity distri-
bution, i.e. vortex, solid-body, etc.

2. Tangential, axial, and radial flow direction and velocity measurements
over a representative sector downstream of each blade row in order to
compare the actual with the single stage or theoretical performance of
the blading.

3. Investigations of the flow in the various stages as the Mach number,
Reynolds number, or flow coefficient is varied.

4. The effect of blade loading, tip clearance, and axial spacing between
successive blade rows on over-all performance.

5. Stalling and surging and the development of methods of delaying or
preventing these occurrences.
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Hot wire measurements and visual observations of smoke or tufts to
verify and extend the measurements of standard instruments would be
desirable.

The desirable features of research compressors are: sufficient size and
axial spacing between blade rows to permit interstage measurements, the
ability to reset or replace rotor and stator blades easily, a speed range
permitting tests over the Reynolds number range from 50,000 to 400,000,
rotor shaft positioning controllable radially so that tip clearances in the
annulus sector where instruments are located can be varied without ma-
chine work, rugged construction so that extended stall-operation study
can be made without damage, and provision to survey representative
sectors of the annulus with probes capable of measuring flow directions
in more than one plane.

A test compressor in use at the National Gas Turbine Establishment
has several of Lhese features (67]. This compressor was built primarily for
investigating the variation of axial flow compressor performance at low
speeds and low Reynolds numbers, but the extreme flexibility which has
been achieved in the design renders it suitable for a large variety of re-
search investigations into the nature of the air flow through compressor
blading. Both the number of stages built into the compressor and the
axial spacing between blade rows may be varied, the maximum number
of stages which may be accommodated being eight, with one-sixth mean
chord axial spacing. The tip diameter is 20 inches with a hub-to-tip radius
ratio of 0.75. Provision is made for traversing Pitot static and yaw meter
tubes across the annulus at any desired circumferential or axial position.

The California Institute of Technology test compressor, illustrated
in Fig. D,7c from [68], was also designed for flexibility in low speed test-
ing. The compressor was designed so that each blade and each blade row
may be removed or adjusted individually. The blade angle settings are
adjustable by ° increments. The compressor size was chosen sufficiently
large so that the use of instruments of a reasonable size would not cause
undue flow interference. A tip diameter of 36 inches was chosen with a
constant hub-to-tip radius ratio of 0.60. The compressor speed range
selected is up to 2000 rpm (315 ft/sec tip speed) to produce sufficient
pressure differences to be measured with good accuracy, and yet low
enough to avoid structural difficulties and to keep within the available
power limitation of 100 hp. The maximum number of stages was chosen
as three plus entrance guide vanes to permit duplication of the conditions
typical of the middle and last stages of a multistage compressor. In addi-
tion, two rows of rear recovery vanes may be included. Since it was felt
that the effects of axial spacing between blade rows had been established
by other investigations, fixed axial positions were included for all lade
rows. Blade aspect ratios and solidities typical of modern high perform-
ance compressors are used.
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lnstfnannentation was provided to allow detailed measurements near
the blade rxrows as well as over-all performance measurements. Over-all
perforroncoce measurements are made by a tachometer, torquemeter
(dynanuonaeter torque), and a Prandtl-type Pitot tube. The detailed
measuremenents are made directly downstream of each blade row by
several ty [pos of yaw, Pitot-static, and total head probes, each of which
may be noiounted in a special instrument carriage. This special carriage
consists of T a base and movable head. The base fits into any one of a sys-
tem of ace excess ports in such a way that bottom surface is flush with the
inside of the compressor casing. The probe is accurately located and held
in the car-rriage head and may be positioned by means of three wheels

which mov.ve the probe radially, rotate the probe about its own axis, and
move the e entire carriage head in the circumferential direction. Corre-
sponding s counters give the position of the probe. A flexible tape covers
the slit iii the carriage base when the head is moved circumferentially.
A circurmerential angle of 150 can be covered by the traversing probe.
This ang1gle is about 30 per cent greater than the 111* stator blade
spacing.

A ki-in, diameter low speed compressor has been constructed by the
General I Electric Company at Evendale, Ohio (Plate D,7b). The com-
pressorisa mounted vertically to reduce inlet distortion and permit access
to the tr'ransparent ports in the casing. Provision is made for 4 stages,
although n the number of stages can be varied. A 400-hp steam turbine
drives thme rotor over a speed range from 100 to 800 rpm through reduc-
tion gea r.rs.

Forc'mlosed circuit testing of small multistage compressors, the General
Electric Company utilizes the facility illustrated in Plate D,7c. Through
the use of pressure-sensitive switches similar to those described in [30],
195 pres sure and 60 temperature readings can be recorded in about one
minute. Rotational speeds up to 20,000 rpm can be provided in either
test eel..k. Dry, refrigerated air flows of 100 pounds per second can be sup-
plied at . inlet pressures from 0.1 to 1.7 atmospheres. Continuous monitor-
ing and F recording of straingauges mounted on stationary and rotating
parts is a provided.

Ruamning a compressor in water reduces the size, rotational speed,
streaes., and power required to very low values. If transparent casings
are wsoed the flow can be studied visually. Because the viscosity of water
increasoses by a factor of six from boiling to freezing, the Reynolds number
can be varied over a wide range. The National Gas Turbine Establish-
ment h.ras constructed a 3-stage axial compressor to operate in water [691.
The tig.p diameter is 12 in. with a hub diameter of 9 in. At the normal
runingag speed, about 150 rpm, hp is required to drive the rotor assem-
bly. Ba-ased on 1.5-in. chord blades, the estimated Reynolds number is in
therar.nge of 100,000 at a water temperature of 120'F.
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D,8. Component Testing of Turbines. Because turbine blade rows
operate with strong pressure drops in general, the design problem might
seem much less severe than for compressor blade rows. This situation
would probably exist were it not so important from a weight, cost, and
strategic materials usage standpoint to obtain maximum power output
from the turbine. For this reason, the same need for thorough research
noted in the previous article as being required for compressors is required
for turbines.

The efficiency of the turbine is of importance in effecting engine fuel
economy. Further, the temperature at which the turbine can operate for
hundreds of hours without exceeding a very small growth strongly influ-
ences the thrust or shaft power produced. The turbine must not only
drive the compressor and accessories over a wide range of rotational
speeds but also must produce the necessary power for the cruise condi-
tion at peak efficiency and maximum continuous allowable temperature.
This must be accomplished with the weight flow and pressure provided
by the compressor in its small range of high efficiency at cruise rpm. For
good efficiency, close radial and axial clearances must be maintained be-
tween the turbine rotor and casings at cruise power output. At other
powers, and when changing speed, the relative dimension changes must
be such as to prevent rubs. The expansion and contraction of the turbine
wheel and casings under the various operating conditions are difficult to
predict.

As noted in the introduction, major alterations of engines on the test
stand are impractical. To provide reasonable assurance of satisfactory
engine operation, the efficiency, weight flow, and torque characteristics
of the turbine over the range of inlet temperatures, pressures, pressure
ratios, and rotational speeds to be encountered should be determined by
tests at full speed and power before assembly on the engine.

The facilities required to permit full scale turbine tests under oper-
ating temperatures, pressures, and speeds are of considerable cost, size,
power, and complexity. The laboratories of the major gas turbine manu-
facturers in the United States and in England are equipped with electrical,
steam, or water absorption dynamometers of from 10,000- to 30,000-hp
capacity. The air is supplied to the turbine stands by compressors re-
quiring a maximum of from 9400 to 25,000 hp. The water pumped during
full capacity operation varies from 8500 to 120,000 gal/min. Large quanti-
ties of hot exhaust gases and extreme noise levels must be dissipated.
Much attention must be devoted to maintaining safe procedures and
conditions. Viewing the multitude of secondary considerations necessary,
the possibility of obtaining many hours of running at desired conditions
would seem small. However, in his concise description of the Westing-
house Gas Turbine Laboratory (70], W. R. New reported that a very high
use factor was obtained in the first eight months of operation.
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Research turbines. In research or early development studies, the
emphasis is on obtaining valid data from a number of turbine designs
rather than to insure exact matching of engine complements and proper
mechanical operation under actual conditions.

In such investigations the difficulty and cost of testing single or multi-
stage turbines can be reduced by taking advantage of the difference be-
tween the velocity of sound in cold air and that in the hot gases which
are the working fluid of the aircraft turbine. The criteria of flow similarity
can be closely satisfied by tests of reduced scale models using cold air at
the appropriate pressure as the test media (711. Assuming that the geo-
metrical similarity is observed, the flow relationships that must be the
same in the model and full scale turbines to obtain representative results
are the Mach number, Reynolds number, the flow coefficient or ratio of
axial to peripheral velocity, and the ratio of specific heats of the working
fluids.

All of these similarity coefficients can be satisfied by proper selection
of model size, rotational speed, and inlet air pressure and temperature
with the exception of the ratio of specific heats y. The steady state values
of y are lower for hot combustion gases than for cold air, so that the rates

at which the various physical properties of the different fluids change
with respect to each other are different. For conventional subsonic tur-
bines the calculatcd differences are small, however, and are usually neg-
lected. Further, the finite time required for some of the component gases
of combustion products to change their heat capacity suggests that in
the rapid flow processes of gas turbines, the effective heat capacity may
be nearer to that of cold air [82,72]. Thus the slight differences aforemen-
tioned may in the actual process be of even less significance. Lovesey [78]
shows excellent agreement between test results obtained from model tur-
bines run on cold air and full scale engines.

The advantages of cold air testing are many and the disadvantages,
for noncooled blades, are few. The primary advantages are:

1. The difficulties of instrumentation and test setup required to make
hot gas tests are avoided.

2. The air supply can be smaller by a factor of from 2 to 20.
3. The power produced is less by a factor of from 5 to 100.
4. The test apparatus, including the model turbine, can be significantly

smaller.
5. Easily machined, forged, or cast materials for blades and disks can

be used.

The apparatus and instrumentation necessary to obtain the data re-
quired to compute turbine performance is similar to compressor stage
instrumentation. A typical rig described by Ainley in [88] is presented in
Fig. D,8. A photograph of the test rotor is reproduced in Plate D,8a.
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Cold air and hot gas turbine testing facilities of the General Electric
Company are illustrated in Plate D,8b and D,8c. The air turbine test
facility is used for aerodynamic testing of full size and scale model single
and multistage turbines under simulated flight conditions at low temper-
atures, 100-375°F. Production or developmental engine turbine parts can
be adapted to the facility as well as specially designed research vehicles.
This facility is equipped with independent, remotely operated inlet and
discharge control valves plus air flow measuring equipment for both main
and cooling air. The main air may be dried as well as heated to eliminate
any condensation shock or discharge icing problems. The facility is inter-
connected electrically with an instrumentation center for automatic re-
cording and plotting of interstage traverse data, and observation of turbu-
lence phenomena. The control room is equipped with photomanometer
panels for instantaneous photographic logging of a large number of
pressures.

The hot gas turbine testing facility is used in evaluating new designs
of turbine components for small gas turbine engines. A 2800 horsepower
load absorbing dynamometer and a high temperature air supply (ade-
quate to meet the requirements of small aircraft engines) is provided
along with the necessary fuel, lubricating oil, control, instrumentation,
and atmospheric pressure exhaust systems. A direct fired combustion
system provides cooling air over the ranges of 100*F to 1000*F with
flows from 0 to 1.5 lb/sec. The control room is equipped with instrumen-
tation necessary for the measurement of torque, speed, flows, temper-
atures, pressures, vibration, and strain. The control center also contains
all of the manual and automatic controls and safety devices necessary to
assure satisfactory operation, mechanical reliability, and safety of the
facility and test vehicle.

Running turbines have been studied in detail with standard temper-
ature and pressure probes, but, to the author's knowledge, no attempt
has been made to examine turbine rotor flows by pressure transfer de-
vices. Apparently, satisfactory turbine design methods have been derived,
partly from the vast steam turbine experience that exists, but largely
from cascade and gas turbine experience of recent years. Perhaps as more
highly loaded turbines of increased flow capacity become necessary and
efficiencies must be maintained or increased, efforts to study turbine rotor
flows in greater detail will be in order.

D,9. Gas Turbine Engine Testing. Ideally, a new gas turbine
engine is an assembly of tested components and need only make its
appearance on the complete engine test stand long enough to prove its
ability to start and operate satisfactorily over the range of conditions
and the period specified for official-type tests. This ideal has not often
been achieved, however; usually the engine is tested before the compo-
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nents and consequently much engine-testing time is devoted to deter-
mining where the aerodynamic, mechanical, and control troubles are
occurring and the nature of the difficulties.

One important purpose of engine testing is to determine how well the
compressor and turbine are matched; that is, whether their weight flow,
pressure ratio, and speed and efficiency characteristics are compatible.
It would appear desirable to have both the compressor and turbine work-
ing at their optimum conditions at the design point, but a compromise
must usually be made to provide surge margin and to permit acceleration
and operation over a wide range of speeds.

The over-all perfoemance values that define the performance of a jet
propulsion engine are the net thrust and fuel consumption. The quanti-
ties usually measured on a static test bed are the air flow, fuel rate, gross
thrust, and bearing and tail pipe temperatures. The air flow can be meas-
ured by standard orifices, nozzles, or venturis in the intake piping, but in
less elaborate installations a calibrated bellmouth intake is used. Fuel
flowmeters of sufficient accuracy are commercially available for most
applications; in some instances fuel weighing or volume tanks are em-
ployed as a positive check when runs of considerable duration are made.
The gross thrust is usually obtained by suspending the engine by means
of flex-plates or parallel-arm bearing systems and opposing the thrust by
air or fluid pressure on balancing diaphragms equipped with damping
devices. Gross thrust can also be obtained by tailpipe total and static
pressure and total temperature measurements. This is a more involved
and usually less accurate method, but in some cases, as in flight tests,
it is the most practical system. Iron-constantan and chromel-alumel
thermocouples are widely used to observe bearing and tailpipe temper-
atures.

When gas turbines are run during the development period, more de-
tailed information is desired. Total pressure surveys in the intake duct or
just upstream of the compressor guide vanes insure that the inlet system
is satisfactory. Static pressure measurements of each compressor stage
permit comparison with design values to check the matching of the indi-
vidual stages with each other and whether the desired pressure ratios are
being attained. Compressor exit surveys of total and static pressure and
total temperature not only aid in evaluating compressor performance but
are also useful in determining whether the flow distribution is likely to be
a source of combustor or turbine troubles.

The accurate measurement of high turbine inlet temperatures is diffi-
cult because of radiation and conduction and the severe temperature
gradients often encountered. This problem is treated in Vol. IX; therefore,
only the sonic orifice and tailpipe temperature plus compressor work
methods of obtaining turbine inlet temperatures are outlined here. In the
sonic orifice method, a sample stream of combustion products is drawn
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through an orifice of known size. The gas is then cooled to a known tem-
perature and drawn through another orifice to measure the rate of flow.
From the rate of flow at known temperature and pressure, the mass flow
per unit area at the sonic throat of the hot orifice can be calculated. The
total pressure at the turbine inlet is readily obtained, so that the total
temperature can be deduced. When care is taken, temperatures accurate
to within 2 per cent in the temperature range from 3400 to 4000*R can
be obtained using an instrument developed by Blackshear [74,75].

In [76], equations are derived which evaluate the effects of thermal
vibrational relaxation and specific heat changes on pneumatic-probe
pyrometer measurements in the region to 3000*K and Mach number
<2.0. By using these derived equations, a simpler working set of equa-
tions is given which is shown to be adequately accurate. Methods are
given by which the results of these equations may be used to determine
the error in temperature measurement if different assumptions are made
as to the state of thermal equilibrium of the gas in the probe. By using
these method, examples are given for a typical probe. Different assump-
tions must be made, depending upon the velocity, probe size, and gas
constituents. The results are in partial agreement with the experimental
evidence obtained in other reports. The relaxation error entailed by using
any of the methods of [76] will not be large for the case of hydrocarbon
combustion in air in the region of free stream static temperature <2500*K
and free stream Mach number < 1.2.

For most purposes, a sufficiently accurate indication of the inlet tem-
perature can be obtained by adding the temperature drop through the
turbine to the tailpipe temperature, which can be measured accurately in
the cooler tailpipe because of reduced radiation and conduction. In jet
propulsion engines the enthalpy drop through the turbine can be calcu-
lated from the enthalpy increase and air flow in the compressor plus the
power delivered to accessories and the estimated losses due to bearings,
seals, and windage.

The turbine inlet total temperature distribution over a sector cover-
ing the discharge from one combustor can is useful data when this type
of burner is used, even if it is only of comparative value. Plate D,9a illus-
trates an installation to permit such measurements. The radial position
of the probes is remotely controlled; total pressure heads can be installed
if desired [73].

The measurements just described are useful in determining the over-
all performance of the engine and in deciding whether or not the various
components are performing satisfactorily. However, more detailed infor:
mation is necessary to study the actual flow conditions within the com-
ponents. Providing instruments to detect the pressures, temperatures,
and directions of the flow in the compressor and turbine without changing
the flow is a difficult task because of the high speed of the flow, the small
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size of the blades, and the close axial clearances normally used. The test-
ing of complete gas turbines involves the same instrument problems as
those of multistage compressor and turbine compoient testing plus those
arising from the assembly of the separate elements. In addition, such
instrumentation requires a longer setup and running time, thus adding to
the cost of an already expensive process. Due to these difficulties, very
little detailed information was obtained during tests of early engines.
Because data so obtained is of value in evaluating the interaction be-
tween and within the compressor and turbine under operating conditions,
interstage measurements have become routine on development engines.
If high power component testing stands are not available, engine testing
is the only way to verify or to provide a basis for turbomachine design
and theory.

Although the turbine inlet total temperature can be determined by
one means or another, several other measurements and assumptions must
be made to estimate the prime factor that limits engine speed and thrust-
the turbine blade temperature. Even though an accurate calculation can
be made of the total temperature and gas velocity relative to the turbine
rotor blade, other factors, i.e. heat transfer and conduction, which affect
the blade temperature and hence its strength and elongation, are either
difficult to determine or vary with operating conditions. The positive
method of running rotors to destruction is hardly practical for current
gas turbines; therefore, direct methods of measuring or deducing blade
temperatures and stresses find considerable favor. Lovesey [73] indicates
a 1000F difference at the blade tip and root between the temperature
obtained by the Brinell recovery method and the calculated total tem-
perature relative to the blades. In this method a few specially tempered
blades are mounted in a wheel and run under steady conditions for about
one-half hour. These blades are then removed and their hardness, hence,
temperature of annealing, measured over the entire surface.

Methods have been devised to make electrical connections to one or
more rotating thermocouples with a minimum of error. To avoid the
generation of extraneous voltages that exist if different metals are used
due to the thermoelectric effect, copper slip rings and brushes are used
under controlled scoring conditions. Junctions between the thermocouple
metals and copper leads to the slip rings of the rotating circuits and be-
tween compensating thermocouple metals and copper leads to the brushes
of the stationary circuit are placed in a region of controlled temperature
(Fig. D,9a and D,9b). For high speed rotors, the number of thermocouples
that can be accommodated if the standard multiple slip-ring system is
used is limited. For mechanical reasons, only about six sets of leads can
be inserted in a protection tube having the proper immersion depth of
10 diameters. A remote-control rotating switch having contacts of thermo-
couple metals has been designed and built. As only one set of compen-
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sating junctions is required, the limitation is removed so that many
thermocouples can be installed and read [77J.

ENGINE TzSTING UNDER FLIGHT CoNDrrioNs. In addition to deter-
mining the performance of a gas turbine under sea level conditions, the
study of high altitude operation, starting, windmilling speeds and drag,
idling thrust, and icing is mandatory for production engines. In general
the temperature and pressure range encountered in high altitude flight

cannot be duplicated on static test stands. A number of different methods
of testing gas turbines under flight conditions are in use (78]. The most
direct method is to install the engine in large aircraft. Test stands have
been located on the summit of a mountain. Simulated conditions are ob-
tained by methods varying from the addition of a few simple elements to
static stands to the construction of large wind tunnels especially designed
to achieve this purpose.

Actual flight. The "flying test bed" is widely used in the United
States and abroad. The test engine is mounted in one of the nacelles,
fore or aft in the fuselage, to one side of the fuselage, or suspended in the
bomb bay of a multiengined aircraft. Flight altitude, attitude, and for-
ward speed effects on aerodynamic thermopropulsive and mechanical
performance can be observed with satisfactory accuracy. If the engine is
mounted separately from the airframe, direct measurement of the net
thrust can be accurately obtained. If the engine is installed in a wing
nacelle or within the fuselage, direct thrust readings are difficult to ob-
tain. With such installations, the thrust is usually calculated from pres-
sure and temperature measurements at the jet nozzle exhaust. The
mature aircraft used in the past for these studies have not been able to
reach the extreme altitudes and speeds desired; however, flight testing
does provide a means of "proving out" an engine with a minimum of
special equipment.

Simulated flight. The simplest method of simulating some flight con-
ditions is to diffuse the exhaust from the engine to lower the discharge
static pressure. An altitude corresponding to the exhaust pressure is thus
simulated. Because the temperature-pressure variation of the atmosphere
with altitude does not follow the isentropic relationship, true flight con-
ditions would not exist unless the inlet flow were throttled or heated.
For example, assuming isentropic flow relationships, if a static nozzle
exit pressure of 973 psf corresponding to 20,000 feet could be obtained,
a 519*R stagnation temperature into the engine would result from a for-
ward speed of 920 ft/sec at altitude. The stagnation pressure at this flight
speed would be 1630 psf, or considerably less than sea level atmospheric
pressure. By throttling the inlet, or by raising the temperature to simu-
late higher speeds, con'ditions encountered in flight could be represented.
If throttling alone is used, one flight speed can be simulated at each alti-
tude, varying from zero flight speed at sea level to sonic at 24,000 feet, etc.
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If a suitable diffuser is attached to the jet nozzle, Fig. D,9c from 1791,
the exit static pressure can be reduced to less than one half of atmospheric
pressure corresponding to an altitude of over 20,000 feet. With atmos-
pheric intake, the ram pressure ratio would thus be over 2.0. By throttling
the intake or diffuser discharge, intermediate flight altitudes and ram
pressure ratios can be simulated.

If means are provided to reduce the temperature of the air entering
the engine, other conditions than the unique altitude-flight speed relation
of intake throttling can be studied. One system to accomplish this is to
draw the intake air through a turbine. The turbine can be wastefully
loaded, or can be used to drive a compressor aiding the jet diffuser to

Air heaters
V-port bypass valve

.Steam injected here

Foxboro Dewcel

,Main hatch

Main butterfly Bulkhead
Volvo

Thrust-measuring cell Diffuser

Ta secondary cooler
and system exhausters

Control valves
Explosion

Primary exhaust gas cooler diaphragms

Fig. D,9d. Altitude chamber with engine installed in test section.

maintain a low pressure at the jet nozzle exhaust. To reduce icing troubles
in the refrigerating turbine, dry air should be supplied. Some drying can
be accomplished by passing the charge air from the atmosphere through a
heat exchanger cooled by the cold charge air leaving the turbine. If suf-
ficient cooling capacity is available, icing conditions can be studied. Wind-
milling speeds and the ease of starting under altitude flight conditions
can be determined if steam ejectors or other means are available to re-
duce the engine tailpipe pressure to low values (Fig. D,9d).

The inet thrust of a turbojet can be measured directly by mounting
the engine in a suitable nacelle in a wind tunnel whose diameter is several
times as large as that of the nacelle. The exhaust gases are usually re-
moved from the tunnel through a duct, cooled by water sprays, pumped
up to atmospheric pressure if necessary, and discharged.

The reduction of the engine noise is a serious problem in most gas
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turbine test installations. The sounds heard upstream of an engine con-
sist mostly of high frequency whine, very annoying when several engine

lengths away but not very distracting 20 to 30 lengths in front of the
engine. Toward the back, and particularly in a 600 cone at the rear of the
exhaust nozzle, the predominant noise exhibits very rapid uneven bursts,
which overpower the whine observed forward, and are excruciating to
the unprotected ear within 10 to 20 lengths and quite disturbing at a
hundred yards. Complaints have been received from persons several miles

distant from tests of large engines. As a result, the engine test stands in

the various industrial and government laboratories are equipped with
extensive mufflers. At the Wilgoos laboratory of Pratt and Whitney
Aircraft, the exhaust gases are cooled by sprayed water, then pass
through an underground labyrinth into large concrete expansion chambers
before being discharged into the atmosphere.

Range of engine tests. In testing turbojet engines, or the gas gener-
ating units of turboprop engines, a major difficulty exists in determining
whether the components are operating at optimum conditions because
compressor-combustor-turbine units tend to operate at only one com-
pressor pressure ratio and turbine inlet temperature at each speed. There

are several means by which the operating range of an engine can be varied
from this single point on the compressor and turbine characteristic curves
at one speed or from single line operation over the range of speeds. A
variable-area exhaust nozzle permits changing the tailpipe pressure,
thereby increasing or decreasing the turbine pressure ratio and the rota-
tional speed. To maintain the speed, a different turbine inlet temperature
and pressure ratio is required. Thus, within the temperature and surge
limits of the engine, a variable tail cone permits a change in the operating
conditions at a given speed. The operating conditions can be changed in a
slightly different manner by blowing off or bleeding some of the air from
the compressor. Neither of these methods nor a combination of the two
permits a very wide range of conditions to be studied, however, as is
illustrated in Fig. D,9e, taken from [801. In most cases where the charac-
teristics of the compressor and turbine are not known from component
tests, the small change of conditions thus attainable will not be sufficient
to provide the desired information. This is particularly true near the
design point, usually selected at the highest permissible temperature and
pressure, where the information is most needed.

In conventional gas turbines, the turbine nozzle operates under choked
flow conditions for normal operating speeds. The effective flow area of
the nozzle and the total pressure and total temperature approaching it
determine the weight flow of the engine. A variable turbine nozzle can
therefore permit the operation of an engine over a range of conditions.
Variable nozzle turbines have not been applied widely, however.

A method making possible the operation of a turbojet engine over a
wider range of conditions is to add or subtract shaft power from the
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engine. In some gas turbines this can be done readily by attaching a
dynamometer to existing auxiliaries (Plate D,9b). By freeing the turbine
from the usual steady state requirement of providing the power to drive
the compressor and the accessories, the turbine temperature and pressure
ratio can be varied at constant speed. An analysis of the effects of ex-

[
Exhaust nozzle area Bleedoff flow
Standard nozzle area Engine air flow2.0 - - :

0
1.6 0.991-

u) (I) Engine speed, 0.885 rated; altitude, 25,000 ft
2! 1 1 19 (2) Rated engine speed; altitude, 25,000 ft

4- 2.0

0okC 1.8 . .. ..

'0W - - -U

1.6

2.6 2.8 3.0 3.2 3.4 3.6

Engine total-temperature ratio Ts/TO
Fig. 1),9e. Effect of compressor outlet bleed-off and nozzle area on

engine pumping characteristics. Flight Mach number, 0.53.

tracting power from the shaft on turbojet engine performances is pre-
sented in 1811.
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SECTION E

FLOW IN CASCADES

A. R. HOWELL

E,I. Ideal Flow in Cascades.

Introduction. A detailed knowledge of the flow through cascades is
necessary in the design of blading for axial compressors and turbines,
and cascade performance can be obtained either directly from cascade
wind tunnel tests and theoretical considerations or indirectly from over-
all compressor and turbine performance. It is with data from theoretical
considerations and from subsonic cascade tunnel tests that this section is
mainly concerned, though the articles include brief accounts of secondary
effects and of heat transfer to blades in cascades. Much of the subject
matter is also covered in other sections of the volume, but in this section
the emphasis has been placed on general considerations of the experi-
mental and theoretical cascade information available, and on compari-
sons between the various methods used to obtain this information, with
particular reference to its useful application to the design of compressors
and turbines.

Art. 1 deals with ideal flow in cascades, giving a general review of the
position and then indicating what can be deduced from such flow calcu-
lations. For a more detailed discussion of the general theories of potential
flow, reference should be made to Sec. B on two-dimensional flow of an
ideal fluid in turbomachines.

Nomenclature. The letter symbols used conform with those used
throughout the volume. Most symbols are also defined in the text when
they first occur. As there are at the moment several systems of notation
and sign convention available for defining cascade properties, the sym-
bols used are illustrated for typical compressor and turbine cascades in
Fig. E,la. Here al and a2 denote the inlet and exit flow angles, respec-
tively, relative to what would be the axis of rotation in an actual machine,
and y is the stagger angle. The stagger angle is the angle of the line join-
ing the leading and trailing edges as defined by the mean center or camber
line and it is not the tangential chord angle. The blade angles correspond-
ing to ac and a2 are given by a, and a2. The chord is c and the spacing or
pitch between adjacent blades is 8. The symbol o which is the opening
between the adjacent nozzles or blades at the passage exit is also used as
the throat width at the passage inlet to the compressor cascades.
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When making comparisons between cascade airfoils fha a different
sources, the airfoils are taken to be defined by their maitlem0oaetrical
characteristics as in [I]. These are the blade camber angi equal to
a' - a', the maximum thickness-to-chord ratio tIc, the potion.n of maxi-
mum camber defined by distance from the leading edge dd led by the
chord a/c, the station of maximum thickness as per cent of e chord, and
the leading and trailing edge radii as per cent of aximu thickness.
For given values of the above main characteristics, airfoils 1mrtrr different
sources are very similar, and the small detail differencesi shape are
usually within the tolerances (± 0.002 in. to ± 0.005 in. for i.Liinchl chord.
blades) necessary for reasonable costs for the hundreds of L.ades neces-
sary in a gas turbine power plant.

a,,a a
'4,Y(+) 

y(-)

Fig. E, la. Cascade notation.

Most compressor blades follow the usual airfoil prsvtioce [,3,41] of
wrapping as a fairing a basic thickness form symmetricslly around the
mean camber line which serves as a skeleton of the airfoil. Tura rbinie blades
(5] are often, if not usually, thought of in terms of passas or channels
rather than of airfoil shapes, and in addition may be simply . conatructed
of circular arcs and straight lines instead of uniformly oa-nging curva-
tures as with airfoils. However, these can also be reducel twco the above
main geometrical characteristics for comparison purposesJ6.1.

Ideal flow methods and uses. Many methods are now a.available for
obtaining with varying degrees of accuracy and compliatio-on the ideal
flow conditions past airfoils in cascade, with the aim olobtaining the
pressure and velocity distributions, and/or the turning eglles or lift co-
efficients, these often being called the "direct" problemsgo--re recently,
an increasing number of attempts have been made at stsfactory solu-
tions for the "inverse" problem of the airfoil shape in mIaozcades, corre-
sponding to specified pressure or velocity distributions. lie1mer [I reviews

( 271 )



E FLOW IN CASCADES

many of these methods, and [8-281 are direct solutions while [24,25,26,

27,28] and also [15,16,231 are inverse solutions. More recent German in-

vestigations are considered by Schlichting [291. All of the previous theo-

ries and methods are for incompressible flows. Approximate and limited

methods for compressible flows are given in [27,801. In a mathematical

sense, ideal flow problems may be said to be solved at least for incom-

pressible flows, but from a practical standpoint they are still of only

limited application to compressor and turbine design.

For direct solutions, normally involving at least advanced if not com-

plicated numerical computation, the alternative of the electrolytic tank,

using an electrical analogy, is worthy of consideration. Malavard [811,

de Haller [82], Hargest [88], and others have successfully used such tanks

for cascade work. De Haler [821 gives examples of pressure distributions,

streamlines, and exit flow angles. He finds that the tank exit flow angles

as are about 1 lower than cascade tunnel test values, or, in other words,

the test deviation 5 = as - a' is 1° higher than the theoretical or tank

solution. It is also shown that it is not essential to do tests at every

incidence to deduce the general flow for many incidences.

The most useful deductions from ideal flows are the exit flow angles at

and the pressure distributions for various incidences & = at - a(,. The as

for given ai gives the turning angles r = al - as, the lift coefficients CL,

and the deviations 5 = as - as. The pressure or velocity distributions

can be used to estimate the critical Mach number [1,19,841, or to indicate

roughly when stalling is likely to occur [1,19,851, or again to estimate

heat transfer to blades [86]. When there is likely to be a considerable

amount of laminar flow as in a nozzle cascade in a wind tunnel, estimates

of drag coefficients or total pressure losses can be made from the theo-

retical velocity distributions, but it is not known whether such theoretical

or experimental results give the same losses as those occurring in the

more turbulent flow in an actual machine. Unfortunately, from a calcu-

lation point of view, the Reynolds numbers Re in which one is interested

are 5 X 10 to 5 X 10, and so include the critical Reynolds number range

of 1 to 3 X 101, the Re being based on the larger inlet and exit velocities.

With inverse solutions there is the possibility of applying to cascades the

large amount of data available from isolated airfoil practice on the more

desirable forms of pressure and velocity distribution around the airfoils.

Exit flow and deviation angles. Agreements, when unstalled, to within

about 1 between experimental and theoretical results for the exit flow

angle a and the deviation 8 are obtained by Howell [1,18], de Haller [32],

Carter and Hughes [19], and Sawyer [28], so that the agreement might be

said to be good enough for most purposes. The theoretical deviation in-

creases slightly with incidence (L = al - a') of the order of Jo to 10 for a

10° increase in L or the turning angle r. The closer the blades the smaller

this increase will be.
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A simple rule for deviation based largely on theoretical results, but
generally agreeing with British experimental information, is that given by
Carter and Hughes [191 and Carter [871 where

6 mO for compressors (1-1)

8 = me Q) for turbines (1-2)

and m is a function of stagger and the position of maximum camber a/c,

and is given in [19,371. Here 0 is the camber angle equal to a' - a' and a/c

is the spacing-to-chord ratio. Typical values of m are given in Table E,1.
This rule is a fairly recent adaptation of the one given by Constant and
referred to in [1].

Table E, I

Stagger -y 300 00 -30

m( .4) 0.20 0.13 0.09

m -0.5) 0.26 0.21 0.19

An interesting confirmation of the above deviation rule comes from
the turbine nozzle example calculated and tested by Sawyer [28]. The
values of a/c, 0, a/c, -y, and a2' for this airfoil are 0.69, 400, 0.5, - 150, and
-350 respectively. From [87] m is then 0.2, and since the blade is a tur-

bine one the 6 from Eq. 1-2 is 5.5*, giving a2 equal to -29.5* compared
with the test value of -29.50 and Sawyer's calculated value of -30*.
Another confirmation is from the tests done by Finger, Schum, and
Buckner [881 on compressor inlet guide vanes where in the middle of
the blade a/c, 0, a/c, and y are approximately 0.8, 300, 0.4, and - 16*
respectively. Then from 137] m is 0.1 and from Eq. 1-2, since inlet guide
vanes are effectively turbine-type blades, the deviation is 2.40, which
again compares favorably with test values of 20 to 3*.

Pressure distributions and critical Mach numbers. As with the exit
flow and deviation angles, reasonably good agreement is found between
theoretical and experimental pressure or velocity distributions in (18,19,
28]. In [89] Katzoff, Bogdonoff, and Boyet find large differences between
theory and experiment, the latter showing lift coefficients only 65 to 80
per cent of the theoretical values, although the general form of the dis-
tributions was in reasonably good agreement. This kind of discrepancy
usually occurs due to stream contraction [1,401 and to secondary flows,
and the low aspect ratios used might have made matters worse in (89].
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A reasonable approximation in such cases to the experimental velocity
distribution on the airfoil can be made if the experimental lift coefficient
is known, either by arbitrarily adjusting the circulation on the airfoil or
by using the Pinkerton distortion 1411.

Fig. E,lb gives an example of theoretical and experimental velocity
distributions deduced from the results of [19. The values of 0, 1, /c, a/c,

1.4

1.0

0.8 'Lo -
5

0.6Theoretical

Experimental

8 = 40 s/c= 0.94
y = 27.50  1 = - 8.50
Theoretical CL = 0.775
Vi = inlet velocity

0.2 !

01 '

0 20 40 60 80 100
Distance from leading edge, per cent of chord

Fig. E,lb. Examples of theoretical and experimental velocity distributions.

and t are 400, 27.50, 0.94, 0.5, and - 8.5* respectively, and the theoretical
lift coefficient CL is 0.775. The theoretical pressure distribution of this
same compressor cascade is given in Fig. E,lc, compared with the pres-
sure distribution for a turbine cascade from [28I with a somewhat similar
airfoil. The values of 0, Y, s/c, a/c, and & for the turbine nozzle example
are 400, - 15*, 0.69, 0.5, and -5 respectively and the theoretical CL is
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0.76. Both airfoils have 10 per cent chord maximum thicknesses, but the
position of maximum thickness is at 37.5 per cent chord for the turbine
blade compared with 33 per cent chord for the compressor blade. In Fig.
E,lc, the maximum suction point is at about 0.5c for the turbine cascade
compared with 0. 15c for the compressor cascade. This difference for what
are in effect very similar airfoils is, according to Carter [87, Fig. 7], what
one would expect to find from the change of stagger from compressor to
turbine cascade. For general comparisons of compressor, turbine, and

CL 0.5 Ie(

0
U,,

-€

....

.Y - 0.5 ... ....

S-1.0 surfaces N - ....T_-

0 20 40 60 80 100
Distahce from leading edge, per cent of chord

Fig. E, lc. Typical compressor and turbine pressure distributions.

isolated airfoils, Zweifel [42], Howell and Carter [48], and Carter 137]
suggest that it is better to base the pressure or velocity distributions on
the outlet rather than on the inlet dynamic head or velocity.

Theory and experiment suggest that the critical Mach number M. is
reached for most practical applications when the maximum local velocity
on the surface of the airfoil equals the local speed of sound. Approximate
conditions in compressible flow can be obtained from the well-known,
Glauert-Ackeret formula.

AP (Ap/APVP)M.0(-)

pV' A/i -M ( 275
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For the maximum velocity to be equal to the local velocity of sound there
is a definite relationship [1,34,44] between (Ap/jpV') and M, and hence
between M and the incompressible (.p/pV)_.o. Details of these rela-
tionships, as applied to cascades, and of the somewhat more recent cor-
rection by von KArm~n (44] are given in [I,841. Using these methods the
M. for two compressor airfoils, having approximately the same inlet blade
angles and exit flow angles from [19], have been calculated and are plotted
in Fig. E,ld.

1.0

E 0.6 z

X Uper surfaces

0 Lower surfaces
:E 0.4 -
" Curve 8 a/c s/c Y

0 400 0.5 0.94 27.50
X 330 0.4 0.94 24.10

U 0.2 _

0  0.4 0.8 1.2 1.6 2.0

Lift coefficient CL

Fig. E,ld. Critical Mach numbers for two compressor airfoils.

One airfoil in Fig. E,ld has a circular arc camber line with a/c = 0.5
and 0 = 400, while the other has a parabolic camber line with a/c = 0.4
and 0 = 33* . The critical conditions at the lower CL are on the lower sur-
face, though for most of the CL range they are on the upper surface. The
Glauert-Ackeret formula tends to give a value comparable with the drag
M. corresponding to say a 50 per cent increase in drag or losses, while
the von K6rmdn correction, which gives M. values about 0.02 lower,
tends to correspond more to sonic conditions on the surface. Bogdonoff
[ 45] also defines a force-break Mach number Mfb which is higher than the
ordinary critical, but one cannot tell from [45] how Mfb would compare
with those deduced from incompressible flow calculations.
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E,2 Two-Dimensional Performance.

General dicseion. The actual two-dimensional flow through a cas-
cade differs from ideal incompressible flow in two main respects: the
boundary layers on the blades and the compressibility effects when the
Mach numbers (M) are large, say M over 0.6 near design conditions and
M over 0.4 away from design conditions. Tests carried out at Mach num-
bers up to 0.2 to 0.3 can usually be regarded as low speed incompressible
flow results. Interest in the boundary layers centers around the resulting
losses or drag coefficients, and on indications of both the positive and
negative stalling incidences. On the basis of local velocity gradients,
Carter and Hughes [19] and Howell [1] suggest reasonable agreement
between values deduced from diffuser tests and those obtained from com-
pressor cascades. More recently Goldstein and Mager [35] have investi-
gated theoretically the attainable circulation of airfoils in cascade and
have obtained results for compressor and turbine cascades which are also
somewhat comparable with experimental experience, as has Schlichting
[S9]. Generally, however, resource is still made to experiment to deter-
mine both the loss or drag coefficients and the stalling characteristics of
cascades.

Cascade tunnel experimental techniques are covered in Sec. D; here
we consider the test results that have been obtained. Experimental data
are reported in [1,5,6,19,28,37,88,39,40,42,43, and 45-56], and although
these comprise a fair number of references, test data have not on the
whole been reported as fully as the theoretical data discussed in Art. 1.
Much of the data has been analyzed in a generalized way to produce
design curves, so that only a few of the actual test results used are given
by way of example. Generalized cascade data will be considered later
(Art. 5). Before proceeding further with the two-dimensional performance
it is necessary to define the various cascade relationships that are used for
plotting and analyzing the results of cascade test work.

Cascade relationships. The lift and drag coefficients (CL and CD) for
airfoils in cascade can be obtained by actual force measurements as done
by Harris and Fairthorne I461, Keller [401, and Sawyer 1281 or by deduc-
tion from turning angles (ri al - a2) and loss measurements, most of
the more recent cascade information being obtained by the latter method.
Assuming two-dimensional flow conditions with the same axial velocity
at inlet and exit, there are definite mathematical relationships [1,40,571
between the two methods. In the relationships to be deduced below, the
flow is regarded as incompressible and the notation will be the same as
that previously used except for the introduction of Co for the mean loss of
total head pressure across the cascade. This loss (6) is usually divided
by IpV', the inlet velocity head for compressor cascades, and it is referred
to 4pV,, the exit velocity head for turbine cascades.
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Fig. E,2a. Cascade relationships.

Consider first the cascade with no losses. The force on one blade of
unit height along or tangential to the compressor cascade of Fig. E,2a is
given by the rate of change of momentum in this direction, that is, the
mass flow past the blade multiplied by the change in whirl velocity, and so

Tangential force - (8pV,)(V. tan al - V, tan as)

-apV2(tan al - tan at) ][P cos 

The axial force per unit height is sap where Ap is the static pressure rise,
giving

Axial force = sap

= 18p(Vl - V2)

= IspV'(tan2 a, - tan' as)
= [spV2(tan a, - tan a.,) sin a

= ~ o a, ] Ina
where a. is the direction of the vector mean velocity.V, to V, and V2 and

tan a. = I (tan a, + tan as) (2-1)

It will be seen that the above two forces have a resultant L perpendicular
to the vector mean direction a. and so the lift

. = CLth ICPV =i spV2(tan a, - tan a,)

and then

CLtb= 2 ()(tan a, - tan as) cos a. (2-2)

since V, = V. cos a..
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The above equations (Eq. 2-1 and 2-2) can also be deduced from circu-
lation considerations and they apply equally to 1,ompressor and turbine
applications. They give the required relationship between the flow angles
a, and a2 and the theoretical lift coefficient CL,..

The mean total head pressure loss a for the compressor cascade can be
regarded as an opposing axial force Co which can be resolved along the
vector mean direction to give the drag, and perpendicular to this direc-
tion to reduce the lift. The resulting expressions obtained are

CD = ()Cos am 23

and
CL = CL - CDtan a. (2-4)

Alternative formulas for drag coefficients are

cD = (a( \cost a.\ (2-5)

and
CD = (8c am) (2-6)

where Eq. 2-5 and 2-6 are used for compressor and turbine cascade analy-
ses respectively.

Eq. 24 gives the true value of CL but it is generally more convenient
to use its theoretical value CL, which is a function only of the turning
angle r and ai or at, and does not include a loss component. In the un-
stalled region the difference between the two lift coefficients is rarely
greater than 2 per cent. The blade efficiencies b are given [521 by

2 CD
b in 2 a.m CDy (compressors) (2-7)

and
I

11b Ci (turbines) (2-8)

and they are simple formulas because CLth and not CL has been used. In
the remainder of this article the theoretical lift coefficient, Eq. 2-2, will
always be used; hence the subscript ,h will be dropped and it will be
denoted simply by CL.

Test results at lom speed. Most of the experimental work published
on cascades has been done at low speeds. The fact that there has been
very little published information at high speeds is partly due to the ease
with which low speed results can be obtained. If used with care, low
speed test results can be applied to most compressor and turbine designs
even when their Mach numbers are high, as the incidences for maximum
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lift/drag are little affected by the Mach number up to the critical values,
the main effect of the Mach number being to reduce the working inci-
dence range for low loss or high efficiency.

4A
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.'-
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I- 40- _
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I..

0 -30 -20 -10 0 10 20

Incidence i = a, - a',, degrees
Fig. E,2b. Turning angles and losses for typical low

speed compressor and turbine cascades.

Typical low speed compressor and turbine results from 431 are com-
pared in Fig. E,2b and E,2c. The 0, a/c, a/c, and a' for the compressor
cascade are 330, 0.94, 0.4, and 140 respectively, while the corresponding
values for the turbine cascade are 850, 0.94, 0.5, and -66.5 ° . In Fig.
E,2b, the turning angle 7 - ai - a2 and the losses expressed as C/ pV'j
and C/jpVt are plotted against incidence t = a, - a,. In Fig. E,2c, the
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corresponding values of the theoretical lift coefficient CL and the drag
coefficient CD are plotted against the incidence. In particular it will be
noticed that the attainable turbine turning angles and lift coefficients are
over twice those for the compressor cascade.
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Incidence i = a, - a',, degrees

Fig. E,2c. Lift and drag coefficients for typi,-al
low speed compressor and turbine cascades.

For design purposes it is generally desirable to operate at as high a
turning angle as possible provided the losses or drag coefficients do not
increase too much and the blades do not become stalled. Stalling of a
cascade can be taken to occur when the blade loss is twice its minimum
value, but for design it is obviously inadvisable to operate right on the
point of stalling, so that for practical use a nominal turning angle r*,
as in [1,561, is taken which is equal to 0.8 of the stalling turning angle.
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The superscript * is used to denote nominal conditions. Another suitable
criterion for design can be obtained without reference to the actual stall-
ing turning angles, that is, by taking conditions corresponding to the
maximum lift-drag ratio for the cascades. Values for the two criteria for
the two previous cascades are given in Table E,2. The maximum LID

Table E,e

Nominal conditions Maximum (LID) conditions
Cascade * C 7 CL LID

Compressor 240 0.95 260 1.03 53
Turbine 57* 2.17 610 2.31 68

quoted are at least comparable if not better than those for isolated air-
foils [43,581, at the Reynolds numbers of 3 to 5 X 10' of these test results.
Reynolds number is referred to inlet velocities for compressor airfoils and
to exit velocities for turbine cascades.

As with pressure distributions in Art. 1 it is sometimes more con-
venient to express the lift and drag coefficients in terms of the exit in-
stead of the vector mean velocities, this being done in 187,42,431. Again
in conjunction with y it is possible to define another form of incidence L.
which corresponds more to isolated airfoil practice, and is taken to be
equal to the difference between the stagger angle and the vector mean
angle, giving &. = a. - y.

The best values to take for nominal or maximum (L/D) turning angles
and lift coefficients are discussed in Art. 5 under generalized cascade data.
Away from nominal values the losses or drag coefficients and the turning
angles or deviations can be found by the approximate curves given by
Carter [371 for compressors and turbines, and by Howell [1,661 for com-
pressors. In Fig. E,2d, the values from 1561 are given, but plotted in a
somewhat different manner. The deviation 5 is plotted as (5 - 8*)/ *
and it and the drag coefficient are plotted against (t - &*)/* where t*,
i*, and * are the nominal values of incidence, turning angle, and devi-
ation respectively.

It is often found (Keller 1401; Howell 11]), when no boundary layer
suction is used on the tunnel walls 11,28,591, that with compressor cas-
cades the air stream in passing through the cascade contracts and gives
a considerably reduced pressure rise to that expected. This effect does not
usually occur with turbine cascades due to their more favorable pressure
gradients. Such contractions appear [I) to have only a small effect on
measurements of loss and turning angle, even though the effect on pres-
sure rise may be appreciable. Therefore it is suggested that with reason-
able blade aspect ratios the direct measurements of loss and turning
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angles only should normally be used in analysis, and that lift and drag
coefficients should be deduced from them as if the flow were properly
two-dimensional. With the smaller blade aspect ratios, corrections to
turning angles may be necessary as discussed in Art. 3 on secondary
effects.

Test results at high speed. The high speed performances of com-
pressor and turbine cascades can be markedly different. For example,

0.6 4,, 0.12

0.5 -0.10

0.4 ---- --- 0.08.. ........ I. ...i o
-"0.3 0.061
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0.2-- 0.04II

0.1 - -0.020

0/'T

-0.1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(t- *)/*

Fig. E,2d. Deviation angles and drag coefficients at other
than nominal incidences for compressor cascades.

efficient operation is unlikely above inlet Mach numbers of about 0.7
for normal compressor blades, while the efficiency of a turbine operating
at 0.9 exit Mach number might actually be better than that at 0.5 exit
Mach number. Fig. E,2e illustrates some of the variations to be expected
in blade loss with M for compressor and turbine cascades. The com-
pressor cascade losses are deduced from an example given by Howell [521
and show a marked increase of loss between 00 and 100 incidence for a
change of M from 0.3 to 0.7. The turbine results of Ainley [61 are for
Mach numbers 0.5 and 0.9 and show little compressibility effects. Actu-
ally the losses for the impulse blade at M - 0.9 are mostly lower than
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those at M - 0.5, a result which was first noticed by Todd [511. Todd
also illustrates his result by photographs of the shock wave formations
involved at these Mach numbers. It should be pointed out that the higher
losses in Fig. E,2e for the turbine blades do not necessarily mean lower
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Incidence .= a, - a, degrees

Fig. E,2e. Variation of blade loss with Mach number.

efficiencies than the compressor blades would give since the turbine blade
work done is much greater for given velocities.

On compressor blades up to the critical Mach number, Bogdonoff [451
shows that there is less than 1 change in deviation or turning angle for

given incidences with increasing M, so that Mach number effects on 6
or r can normally be neglected. However, on turbines, Ainley [6) sug-
gests that the deviations or exit flow angles may vary 20 to 60 between
M = 0.4 and M = 1.0, and he gives curves for these variations. Todd
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[511, over a similar range, shows 3* to 4 change in angles. All the tur-
bine variations give smaller deviations or higher turning angles at the
higher Mach numbers. For conventional turbine blades the curves given
by Ainley (61 are such that at M = 1.0, the outlet angle at is given by
the common "steam turbine" rule of cos at equal to (opening/pitch) or
(o/s). Though with compressible flow there are many possible ways of
defining the lift coefficient, Eq. 2-2 giving the low speed CL is convenient
to use even at high speed, but physically it then becomes purely another
but useful way of expressing the amount of turn given to the fluid.

It has already been stated that compressibility effects appear to be
more critical for compressor than for turbine cascades. The critical Mach
number for compressor cascades can be defined as that Mach number at
which local sonic conditions are first attained on the blade surface, and
it is obtained either from theory (Art. 1) or by schlieren photographs [45].
With actual high speed cascade experimental measurements it is con-
venient to define a drag critical Mach number corresponding to, say, a
50 per cent increase in loss, or a force-break Mach number where the
turning angle falls off as in Bogdonoff 1451, or again by the point where
the pressure rise drops off (Bowden and Jefferson 1541 and Howell I1).
There is as yet no general correlation of Mach number effects, and refer-
ence must be made to the actual test results as given in, for example,
[1,45,52,54,56. With further increases in M the losses may increase to
such an extent that zero pressure rise results; in [1,561 this limit is de-
fined as the "choking" Mach number Meh. There is a theoretical expres-
sion for Mob dependent on the value of (o/s cos al) where o is the throat
width or opening at inlet to the cascade (Fig. E,la), s the blede spacing,
and at the inlet flow angle. The expression [1] is as follows for a ratio of
specific heats of the fluid equal to 1.4:

o = /M 1.2 \2
s cos a (Y + 0.2M,2) (2-9)

Fig. E,2f shows a comparison between the test results from 11,561 and
the theoretical values given by Eq. 2-9. The more recent values in [56]
are the ones recommended. The M = 1.0 limit is usually a cascade tunnel
one and higher values than 1.0 could be obtained in an actual compressor
under certain conditions.

Reynolds number effects. Most cascade tests have been carried out in
the ranges of direct interest. However, for operation under altitude con-
ditions or for scaling components up and down in size, it is important to
know the Reynolds number effects on the results that have already been
discussed. Also, from a fundamental research viewpoint it is desirable to
separate Reynolds and Mach number effects. Unfortunately there is little
published cascade data on this subject, so that few comparisons can be
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made. Results from actual compressor and turbine tests are reported in
[8,60,61,68,68,64, and from turbine cascades in 18,28,511.

In Fig. E,2g some of the available results are plotted. The loses or
(I - q) are given as relative to their values at a Reynolds number Re of

106 , the Re for compressor and turbine blades being based on the inlet
and exit flow velocities respectively. The turbine cascade losses deduced
from Ainley [61, Sawyer (*81, and Todd (511 are such that they vary be-
tween Re- 0'' to Re- 1.0 over the Re range of 0.3 X 10' to 2 X 106 with

0.9 0

I.0

E 0.8-
.0

000
1i

0 4

o 0.6

.80.9 1.0 1.1 1.2 1.3

Throat width/inlet width, o/s cos a,
Fig. E,2f. Choking Mach number and throat width for compressor cascades.

low turbulence in the cascade tunnels. Sawyer [081 also shows that in-
creasing the degree of turbulence reduces the Reynolds number at which
the losses become large. It was not possible from these results to deduce
definite rules or to discriminate effectively between the reaction- and
impulse-type turbine blades. Compressor cascades could be expected to
give somewhat comparable variations of losses with Reynolds number.

Actual compressors and turbines usually have much smaller variations
in efficiencies or losses with Re than have cascades, due to the greater
turbulence of the flows and to the secondary losses probably not varying
much with Re. A curve for turbines deduced from Moyes and Penning-
ton [621, and a mean curve for compressors from d'Epinay (611 and Moyes

( 286



E,3 • SECONDARY EFFECTS

S 4 - -

3 - !

0 2

0

_ 0.6 -. . ..

0.4 ......

0.1 0.2 0.4 0.6 1.0 2 3 4 6 8 10
Reynolds number Re>X 10- s

Fig. E.2g. Variation of losses with Reynolds number.

and Pennington [62] are also given in Fig. E,2g. In the Re range of 0.6 X

10' to 10' the I - q is very roughly proportional to Re- '.

E,3. Secondary Effects.

Description. In use, a cascade of blades has a finite length or height

and is bounded by end walls on which there is normally an appreciable
boundary layer. In addition there may also be a tip clearance at one end.
The presence of this boundary layer and tip clearance gives rise to sec-
ondary effects which are reasonably well known from a qualitative point
of view. Theoretically, certain aspects are understood, but considerably
more experimental data are required before quantitative values can be
accurately established for these effects. The two-dimensional results al-
ready discussed are applied to the design of the individual airfoil sections
which make up the blades in compressors and turbines, but the over-all
performances of the machines have to be obtained, at the present time,
by the use of empirical correction factors which take into account these
secondary effects. In this article, only the secondary effects in simple
cascades are considered, and reference should be made to Sec. C, F, and H
for the more complex three-dimensional flows in actual compressors and
turbines.

During cascade tests with low aspect ratio blades and/or thick bound-
ary layers on the end walls, it has been observed that the exit flow angles
obtained were different than those for high aspect ratio blades with thin
boundary layers. Normally the exit flow angle a2 at mid-blade height was
larger, so that the deviation 5 = a2 - a' was higher than expected for
two-dimensional flow. On the basis of wing theory, Carter and Cohen 1651,

( 287 )



E " FLOW IN CASCADES

Hiausmann [661, and Carter 1671 investigated the induced velocities due
to the trailing vortices and obtained values for the induced angles neces-
m, ry to correct the observed test readings to values corresponding to true
infinite or two-dimensional flow conditions. The methods are somewhat
imilar to those employed in the case of a single airfoil projecting into a

wind tunnel wall boundary layer (see Preston 1681). In addition, in [65,671
an expression is given for the induced drag. So far, this method of attack,
from wing theory, has given no quantitative indication of the actual sec-
ondary flow in the blade passage or duct.

Another approach which will be referred to as the "duct theory" is
given by Squire and Winter 1691 and as a more generalized result by
hlawthorne [701. In [691 the secondary flow is regarded as a perturbation
on an essentially two-dimensional motion. In the simplest case of the
impulse cascade the secondary vorticity is deduced to be quantitatively
equal to twice the turning angle r multiplied by the incoming vorticity.
Excellent correlation is obtained between the theoretical and experimental
secondary or induced velocities in the plane of the trailing edge of the
cascade. The method does not directly give the mean exit flow angles
some distance downstream of the cascade, as usually observed during
cascade testing, although a form of local flow angle near the trailing edge
of the cascade can be obtained. A drag coefficient associated with the
secondary flows can be deduced, but it is not known how much of this
drag occurs as loss when applied to an actual compressor or turbine; it is
Aot loss that would be measured by a Pitot tube in normal experimental
vwork. More detailed theoretical aspects of vorticity and circulation are
given in 171,72,78,741.

The nature of secondary flow is illustrated in Fig. E,3a. Because of
tlhe turning of the stream, there is a pressure gradient across the blade
passage to balance the centrifugal forces and there is a relatively high
pressure on the lower surface and a low pressure on the upper surface
of the blade. Near the walls the velocities are smaller, so that the re-
quired pressure gradient is reduced, which gives on the lower blade sur-
face a smaller pressure near the wall than in the middle of the blade with
a resulting secondary flow toward the wall on this surface. On the upper
surface the corresponding flow is away from the wall. This motion is
superimposed on the main flow and results in a helical motion in the
passage. Test and theoretical values of the secondary or induced veloci-
ties in the passage have been given for an impulse cascade by Squire and
Vinter 1691.

Immediately downstream of the trailing edge of any blade, there is a
surface of discontinuity of velocity, equivalent to a vortex sheet. This
vortex sheet is unstable and rolls up into two trailing vortices. Traversing
with a Pitot tube a short distance downstream of the cascade reveals the
two trailing vortices as cores of high total head loss. Such traverses show-
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ing the cores of high total head loss and the other losses associated with
secondary flows have been given by Howell 1561, Carter and Cohen 651,
Carter 167], Sawyer [281, and Todd 175. A comparison between the re-
action turbine cascade result of Sawyer [281 and the compressor cascade
results of [56,65,67,75] shows how much smaller are the secondary losses
for reaction turbine blades. The displacements of the boundary layers
have been discussed theoretically by Weske [76], while Scholz [771 re-
ports some measured secondary flow losses at the ends of a reaction tur-
bine -cascade. Visualization studies of secondary flows made by the
National Advisory Committee for Aeronautics are given in [78,79].

Inlet flow

V,

\V2

Exit flow

Fig. E,3a. Nature of secondary flow in a cascade.

Wing theory-Induced angles. In the simplest wing theory the vortex
sheet is assumed to roll up into two trailing vortices, distance b' apart,
where b' is of course somewhat less than the blade height b. By consider-
ing the appropriate image system, Carter and Cohen 165] and Carter 1671
have deduced the following simple expression for the induced incidence
or downwash angle e to be applied to the vector mean angle a. at mid-
blade height.

1 CL (-1C = -- 1 - (3-1)

In Eq. 3-1, Aa. is the change in a., CL is the lift coefficient (Art. 2),
s/c the spacing-to-chord ratio, and in addition sb is assumed to be small.
The value of b'/b varies with the boundary layer thickness, with the
aspect ratio, and with compressor or turbine cascades, the normal vari-
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ation being between 0.85 and 0.95. For example, with a value of 0.88 for
'/5, i is equal to 0.03C/(s/c) radians or 1.7CL/(u/c) degrees. If a, is

the actual test vector mean angle, then the effective or two-dimensional
angle is a. - e.

Test results are corrected to two-dimensional flow conditions by tak-
ing note of the change e or Aa. in a. for the given CL and then working
out the corresponding changes in al the inlet flow angle and in a2 the
exit flow angle, by the use of the cascade relationships of Art. 2. When

- Test (3-dimensional)

------- Corrected (2-dimensionol) .,s- // I

-Aa , d- /
Aa1.- / / /

/,/I
/',-' // ., !

Fig. E,3b. Test and corrected angles for a compressor cascade.

eor Aa. is small, as they usually are, then the changes in a, and a2 are
given by

AaA  I( + tan a, tan a.)(3

a. = -t" tan2 0 (-2

Aa =I- -tan a2 tan a.) 33
%. = -{- tan' c3

These changes are illustrated in Fig. E,3b, for an arbitrary compressor

cascade.
To show the magnitude of the induced angles, consider the two com-

pressor cascades used in 65 .Th ae ne c, the inlet blade angle

a, and the outlet blade angle a' were 30*, 37*, and 7* respectively. The
aspect ratio and the value of b were 2.0 and 0.88 respectively. Table

E,3a shows the results obtained for two spacing-to-chord ratios, and gives
finally the corrected or two-dimensional flow angles. The test or three-
dimensional deviation angles i at mid-blade height are 1.8 and 1.5
greater than the corrected or two-dimensional deviations. Smaller bound-
ary layers on the cascade tunnel walls can reduce these differences by
making sp b nearer to the desirable value of unity.
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a'uble E,$a.
Spacing/chord (a/c) 0.5 1.0
Test at 38.00 37.50
Test a, 26.80 2P .2
Test as 13.00 17.00
Test deviation a 6.00 10.00
C1 0.49 0.81
dal 1.50 1.30
da. 1.70 1.4"

as 1.8 1.5*
Corrected at 36.5 36.20
Corrected a. 25.1V 26.80
Corrected at 11.2' 15.5"
Corrected deviation a 4.20 8.50

The wing theory method of Hausmann [661 is more complex and it is
difficult to make a direct comparison with the above simple theory. Com-
pared with the previous theory, Hausmann's analysis shows more serious
induced effects with increasing boundary layer thickness and with re-
duced aspect ratios. There is no great change in induced angles for be-
tween 4 and 16 blades in the cascade tunnel, and aspect ratios of 2 to, 4
give very small changes for the example given in [661.

Wing theory-Induced drag. For secondary flows, the kinetic energy
of the secondary or induced velocities can be expressed in terms of drag
coefficients, but it is not known how much of this "drag" really occurs
as loss in a compressor or turbine or even in a cascade tunnel. With
wing theory, on a similar basis to the induced drag of finite isolated wings,
an induced drag coefficient CD, can be defined equal to eCL. In the calcu-
lations for e the effective blade length is taken as b', but conventional
drag coefficients are based on the true blade length b, so that CD, becomes
eCL(b/b), which when combined with Eq. 3-1 becomes

With the value of b'/b of 0.88 for the example of Table E,3a, CD, =

0.0264C¢/(s/c). For the example quoted, the values of CD, are 0.013 and
0.017 for the spacing-to-chord ratios s/c of 0.5 and 1.0 respectively.

Duct theory. The aim in duct theory is to ascertain the vorticity
pattern in a plane perpendicular to the main stream at the exit of a duct
or a cascade for a given, but nonuniform, upstream main velocity distri-
bution, and then to obtain the secondary velocities from the vorticity
pattern. Squire and Winter [691 deduced the following expression for the
downstream vorticity Z:

2r dV (3-5)
dz

where r is the turning angle, V is the upstream main velocity at a dis-

tance z along the span or blade height, and d V/dz is the incoming vor-
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ticity. Hawthorne [701, Preston (711, and others have also deduced Eq.
3-5. A more generalized result is given by Hawthorne (70].

The actual works [69,70,71] should be consulted for rigorous deduc-
tions of Eq. 3-5 and for the more generalized result of (701. Below is given
a very simple, but less rigorous, solution which gives the same results.
In a cascade or duct, consider an element of a curved stream tube of
circular cross section, the radius a of which is very small compared with
the local radius of curvature r of the tube. Let the main stream velocity
at the center o of the tube be V. and its variation with z, which is per-
pendicular to the turning plane, be given by V = V. + Xz as shown in
Fig. E,3c.

o y

0% +0 o 4 A
A B l IV Vo + AZ

0Y o0-- Vo

o-.-0 
Vo - o

Fig. E,3c. Simple duct theory for secondary flows.

In this simple solution the forces tending to rotate the stream tube
elemeint are considered, and it is assumed that they are the same as when
the rotation is of the "solid body" type. If w is the resulting angular
velocity, the secondary vorticity E, which we need to know, is equal to 2(.
The density and depth (along the x axis) of the element are both taken as
unity. The strip AB of fluid of width dz and length I will experience an
outward force dF given by

dF (V + z)'
r" r

= - V.(V° + 2Xz)

if Xz is small compared with V..
The couple about the center of gravity o of the forces dF is expressed as

zdF = V +a dz = I ,

where I is the moment of inertia of the section about the y axis and is
equal to one half of I., the moment of inertia about the x axis. The
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previous couple is in the opposite direction to the angular velocity w in
the figure and so

w 2V ,

giving
dwo VAX

where dt is a time increment. As = 2w and X dV/c, then

d~2Vd2
it r r dz

If r is the turning angle of the stream tube, then V./r dr/ct giving
d dV dT

ciL
or

d -2 -E d, (3-6)

so that when dV/dz is a constant in the stream tube considered,

dV

This is the result given in Eq. 3-5 and obtained in 169,70,711. The more
general solution of Hawthorne 1701 can be obtained in a somewhat similar
manner.

Eq. 3-5 and 3-7 strictly apply only to the turning of a constant area
passage, such as with a typical impulse cascade; Eq. 3-6 should be inte-
grated for other applications. However, after allowances have been made
for blade thickness effects, the final integrated results for compressor and
turbine cascades in general are not very different from those given by
Eq. 3-5 and 3-7. Another effect which has to be taken account of in more
accurate estimates is the fact that the main velocity profile deteriorates
in passing through a compressor cascade while it improves with a reaction
turbine cascade. Again, stalling at the blade ends affects the secondary
flows.

Having obtained the downstream vorticity t, let v and w be the sec-
ondary velocities in the y and z direction respectively of Fig. E,3c. Then

aw av -2 dV01v , Ba d--

and continuity gives
y Ow

If 0 is the stream function of the secondary motion, v = ffa/Oz and
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w = -0,/ay, and
azo + .9-2ff02 dVVy- az- = 2 (3-8)

which is Poisson's equation for the secondary vorticity. The solution of
Eq. 3-8 is difficult and involved, although it can be solved by a series
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Fig. E,3d. Secondary velocities at mid-height and wall.

method [691, by relaxation methods 173], and by electrical analogues [801.
In the following subarticle, the application of an approximate and limited
solution by the author is given.

Application of duct theory. From any secondary flow theory, a
blade designer wishes finally to estimate the three-dimensional exit flow
angles a2. A form of local flow angle near the trailing edge of a cascade
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can be found by taking the secondary flow angle component Aas
tan- 1 (i/V2), where 0 is the mean local secondary velocity perpen-
dicular to the span or blade height and Vt is the two-dimensional exit
velocity. The three-dimensional exit flow angle is equal to the two-dimen-
sional exit flow angle plus Aa2. 4a2 is also equal to - A7, the change in the
turning angle r. To indicate the likely effects, the author has deduced
some approximate expressions for the mean secondary velocities Z. and 0.
at the mid-height and wall positions respectively. In the expressions, Vt.
.nd V1, are the values of the inlet or upstream velocity Vt at mid-height
and wall respectively, r is the turning angle in radians and is equal to
at - at, b is the blade height, 8 is the blade spacing, and at is the exit
flow angle.

For a linear velocity distribution upstream, Eq. 3-9 applies
approximately

7(V,. - Vt.) T(VI. - Vt.)

(1.0458 cos a )0 tanh b (3-9)
\ b / 1.045s cos a

For a parabolic velocity distribution upstream, Eq. 3-10 and 3-11 apply
approximately:

_ _ _ 4' cost a, [ - ('b/s cos at) 1 (3-10)
r(V. - V ) b [ sinh (s/)J c a 3)]

482 cos a,[ - (Nr3b/8 cos at) ]
T(Vi, - V) = bs L tan- (h"3b/s cosa 2 )] (3-a2)

These expressions for the secondary velocities . and i, are plotted in Fig.
E,3d, for various values of the exit passage aspect ratio b/s sin a.

Eq. 3-9, 3-10, and 3-11, although only approximate in general, are
accurate for very small aspect ratios and are reasonably accurate for very
large aspect ratios. In addition, Eq. 3-9 for the linear velocity distribution
gives the correct answer for a passage aspect ratio b/s sin a of 2.0.

Tables E,3b and E,3c give some results from the above expressions
for an impulse cascade with at = 450, a2 = -45*, r (2-dim.) = 900 =
r/2 radians, s/c = 0.5, V,/ VI, = 0.5, and for aspect ratios (b/c) of 2,
3, and 4.

Table E,,b. Linear velocity distribution upstream.
Aspect ratio (b/c) 2 3 4

b/s cos a, 5.66 8.48 11.31
i,/?(Vi. - V,,) +0.185 +0.123 +0.092
D./?(V,. - V,,) -0.185 -0.123 -0.092

Ar - -Aa% (mid-height) -8.2* -5 50 -4.1 °

Ar - -Aa, (wall) +16.20 410.91 +8.2*
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Tabte RESc. Parabolic velocity distribution upstream.
Aspect ratio (b/c) 2 3 4

b/ cosas, 5.68 8.48 11.31
i/M - V1.1) +0.0416 +0.0185 +0-0104
"/rv.- V111) -0366 -0.254 -0.193

Ar - -Aa:, (mid-height) -1.90 -0.8r -0.50
Ar - -4kas (wall) +29.9* +21.80 +16.90

For the aspect ratio b/c = 3.0 with the previous impulse cascade,
approximate values of - Ata and Ar along the span or blade height have
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E,4. Heat Transfer to Blades in Cascade.

General considerations. Information on heat transfer to blades in
cascade is necessary for estimating the amount of cooling required for
the blade rows of cooled turbines in general and also the quantity of heat
needed to de-ice the inlet guide vanes and the first few blade rows of
compressors in aircraft engines. Much of the earlier German turbine-
cooling investigation was aimed at the use of normal gas temperatures,
but with inferior blade materials. More recently the general trend has
been toward the use of higher temperature turbines with the material of
the blades at more normal temperatures. A considerable amount of data
now exist on the subject, as shown by [36,81-1051. In particular [36,90,
105] give good general surveys of the problems of interest to readers of
this section and include British, American, and German information.
181,8,841] are useful standard references to heat transfer in general, while
[36,91,92] give results on compressor blades. The application of turbine
cooling is considered in more detail in Vol. XI

All cooling or heating of blades requires a knowledge of the rates of
heat transfer between a gas stream and the blades, though the conditions
are more involved with effusion or transpiration cooling. These rates of
external heat transfer are inescapable and tend to dominate the resulting
characteristics of any cooling system. Heat transfer coefficients h are de-
fined as the heat quantity transferred per second per unit surface area
per degree temperature difference between the gas and the surface. It is
convenient to express them nondimensionally in the form of a Nusselt
number N'u = he/k, where c is the blade chord and k is the thermal con-
ductivity of the gas stream. It will be seen later that Nu is primarily a
function of Reynolds number (Re) and cascade geometry. The internal
cooling and the taking of heat away from a turbine blade can be done by
air or liquid or a combination of both. In this article, consideration is
given only to simple internal air-cooling with the passages arranged along
the spanwise direction. Generally, the methods of Smith [361 and Ainley
105] are followed.

External heat transfer coefficient8. The external heat transfer coef-
ficients h, from gas to blade and their Nusselt numbers Nu vary around
the blade profile. High local rates of heat transfer occur at the leading
edge where the boundary layer is thin and laminar. The values decrease
as the boundary layer builds up around the surface and then increase
sharply when the boundary layer becomes turbulent [36,105]. However,
average values are usually taken which are measured experimentally or
are deduced from theory. The mean Nusselt number Nu varies with the
Reynolds number Re, approximately in proportion to Rex where x varies
between 0.5 (for a wholly laminar flow) and 0.8 (for a wholly turbulent
flow). Ainley [1051 has deduced the following simple expression for
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1Mu hc/k: (Re.\l'(T 1 '
Aru - NU x O ,/ ,\01 (4-1)

and has given curves for Nu* and x for turbine blades.
In Eq. 4-1, Nu* is the mean Nusselt number at Re f 2 X 106 and

T. and Tb are the gas and mean blade absolute temperatures. Actually
T. is an "effective" gas temperature, the temperature that an uncooled
body would attain in the same gas stream, there being no conduction or

1000

500600 - -

c/300 1Z , I

400

Z 200 __- -1
,. ...-1

100,

0.5 1.0 1.5 2.0 3.0 4.0 5.0

Reynolds number Re X 10 -5

Fig. E,4a. Variation of Nusselt number with Reynolds number for turbine cascades.

radiation of heat to or from the body. T. is approximately equal to the
total gas temperature minus 0.15 of the mean kinetic gas temperature
around the blade. The viscosity u and the gas thermal conductivity k
are conveniently taken at effective gas temperature conditions. In this
article, Re is always based on the exit flow velocity V2. Some values of
Nu, for turbine blades, taken from the mean curves of (105] are given in
Table E,4a, and the Nusselt numbers are plotted against Re in Fig. E,4a,
all for Ti/Tb - 1.0.

Table E,4a.
Blade V Nu* X Nu

Nozzle 0o 320 0.55 O.38Re0 "
Reaction - ts/2 370 0.625 0. 18ReO.6I2
Impulse -at 550 0.7 0.106Re. 7

( 298 )



E,4 - HEAT TRANSFER TO BLADES IN CASCADE

Values for T/Tb other than 1.0 can be obtained by multiplying the
previous cascade values of Nu by the factor (Tg/Tb)' 1" in Eq. 4-1. This
correction is not very large, being a factor of 1.058 for T,/Tb = 1.5, the
latter being rarely exceeded. Actual results from turbine tests, as distinct
from cascade tests, suggest somewhat higher values of Nu* and x due to
greater turbulence and unsteady flows in the turbine [1051.

In applying Nusselt numbers it is often easier to consider AH/H
where AH is the heat flow to the blade and H is the maximum possible
heat transfer equal to wc,(T. - Tb), where w, is the gas flow through
the passage between two blades. With Re based on the exit velocity V 2,
[861 gives AH/H as

S (Nu (4-2)

AH = h.Sb(T, - Tb) (4-3)

I = w,c,(T, - Tb) (4-4)

where Pr is the Prandtl number us/k, S, is the blade perimeter, b is the
blade height, and c, is the gas specific heat at constant pressure. Pr is
nearly constant at 0.71 for air and S, is approximately equal to 2.3e for
tu,'bine blades, and so

At = 3.24 (Vu)( c (4-5)
Values of AH/H for three typical turbine blades in cascade are shown in
Table E,4b and Fig. E,4b.

Table E,4b.
Blade 8/c al a2 AH/H -AH/H at Re - 2 X 10'

Nozzle 0.75 00 -60* 3.3Re - .4 s  0.014
Reaction 0.625 250 -50 °  1.44Re- '' 7' 0.015
Impulse 0.5 450 -450 0.98Re - 1.3 0.025

An added interest in AH/H is that by Reynolds' analogy [86) it is
roughly one half the blade loss expressed in terms of &/4pV1 as in Art. 2.
Such estimates are considered in [86].

No general correlation seems to have been made for compressor blades,
and it is suggested that Eq. 4-1 should be used without the (T 3 /Tb)'

4

term and with x equal to 0.8. Very rough values of Nu* would be about
400 for inlet guide vanes and about 600 for rotor and stator blades, the
limited information available indicating large variations in Nu*. The Re
is based here on exit velocity V2.

Heat transfer in cooling passages. In the simple internal air-cooling
of turbine blades by passages arranged along the spanwise direction, it is
desirable for generally efficient operation to limit the quantity of cooling
air per row to values of I per cent to 3 per cent of the hot gas flow. In
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these spanwise passages with the cooling air flowing from blade root to
tip, it is necessary to devise cooling passage shapes such that the internal
cooled surface area is large. At the same time the cooling air must scrub
the internal surfaces at a high velocity, which implies that the cross-
sectional flow area of the passages must be small. Ainley [106 has pro-
duced a useful figure of merit for comparing the relative efficiency of

0.050 , -

0.045 - - -

0.040 - - - - -

0.035

Odes
0.020 - -. -....

0.015

0.010-,

To/Tb 1.0

0.005 I I _.

0.5 1.0 1.5 2.0 3.0 4.0 5.0

Reynolds number Re X 10-5

Fig. E,4b. Variation of All/H with Reynolds number for three turbine cascades

various cooling passage configurations with a blade of given external
shape, which he termed the "Z factor," defined as

Z factor = (4-6)(A./10)(4)

where S. is the total wetted periphery of cooling passages in one blade at
any spanwise position, A. is the total cross-sectional area of the cooling
passages in one blade, and c is the blade chord. For given external con-
ditions the Z factor determines the relative blade temperatures, and if,
in addition, the hydraulic diameters of the cooling passages being com-
pared are equal, then the pressure losses in the passages also remain the
same.

In comparing the cooling characteristics of different turbine cascades,
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Smith and Pearson [90], Ainley [100,105], and others use the concept of
a relative blade temperature equal to (Tb - T.)/(T, - T.), where T,, Tb,
and T. are the absolute temperatures of the gas, the blade, and the cool-
ing air respectively. Tb is usually the mean chordwise value of the blade
temperature at the given spanwise position. As with the external heat
transfer coefficients, it is convenient to think first in terms of the iso-
thermal conditions where T./T. --* 1.0, the smallish effect of T,1T. being
regarded as a correction, though it is not proposed here to deduce the
necessary corrections. With TI1T. -- 1.0, it is possible to find easily a
simple relationship for the relative blade temperature by equating the
external heat transfer to a section of the blade to that for the correspond-
ing section of the cooling passages, neglecting metal conduction in the
spanwise direction and radiation effects. The other assumptions made
are that the gas and cooling air viscosities are the same, which is true for
T,/T. -- 1.0; that the Prandtl number is 0.71; that the cooling passage
Nusselt number (Nu.) [86,821 is given by Eq. 4-7 for turbulent flow, which
is th(. more normal condition of the cooling air; and that 8, is approxi-
mately equal to 2.3c.

Nu. = 0.020(Re,)o0' (4-7)

The Re, is based on the hydraulic diameter which is equal to four times
the hydraulic mean depth, that is, equal to (4Ao/S.). The expressions ob-
tained for the local relative blade temperatures at some given spanwise
position are as follows:

Tb-T. 1 (
T,- T. 1+X (4-8)

and
X T - Tb

T,- T.

= 0.0066 'Re. w.- c C a (4-9)

It will be noticed that the local relative blade temperatures, for given
external conditions Nu., Re,, b/c, s/c, and cos a2 are only dependent on
the Z factor of Eq. 4-6 and on the ratio of the cooling air quantity o. to
the gas flow quantity o,. Eq. 4-9 applies at a given spanwise position and
actually the cooling air temperature To increases from its value T, at the
root as the air moves up the cooling passage, due to the heat transfer
involved. Taking T, to be the original cooling air temperature it is again
possible to deduce simple expressions for the relative blade temperature
(Tb - T,))/(T. - T.1), as given by Eq. 4-10 and 4-11.

Tb-T e (4-10)
T., 1 +X
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ad
yNu wc 3.24 X y (4-11)

Re. w. a cos as 1 +X b

where y is the spanwise position measured from the root, and b is the
blade height. An example of this calculation is shown in Fig. E,4c, for
Z 200, Re, - 2 X 106, Nu, = 320, s/c = 0.75, b/c - 2.0, al= 0' ,

a: - 60, and T,/ T.,- 1.0. The results are plotted for three cooling

Gas 1.0
Nozzle blade

alO*0 a2 =-60*

0.8. b/c = 2.0
s/c = 0.75

4-

0.6

0.2
4-

4-.4 
^

Cooling air 0  0.2 0.4 0.6 0.8 1.0

Root Tip

Spanwise position
Fig. E,4c. Spanwise variations of blade temperatures.

air flow-to-gas flow ratios (w./w,) of 0.01, 0.02, and 0.03. The results for
T8/T. greater than 1.0 would give somewhat higher relative blade
temperatures.

To illustrate how the Z factor controls the number of cooling pas-
sages for different hole shapes, Fig. E,4d has been prepared. For a Z fac-
tor of 200 and a hydraulic diameter of 0.0266c, one can have 50 circular
holes of diameter 0.0266c or 13 rectangular holes of length 0.146c and
width 0.0146c. Both cooling passage configurations would be expected to
give similar cooling and pressure loss characteristics.

More generally, measurements of average heat transfer and friction
coefficients for subsonic flow or air in smooth tubes at high surface fluid
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temperatures have been explored comprehensively by the NACA [86].
Internal cooling passages require thicker trailing edges than normal and
some results on an experimental investigation of a thick airfoil nozzle
cascade are given in [89].

Z factor = 200

50 circular holes
(diameter =-- 0.0266c) 13 rectangular holes

(length = 0.146c, width =-0.0146c)

Fig. E,4d. Two cooling passage configurations giving similar

cooling and pressure loss characteristics.

E,5. Generalized Cascade Data.

Methods of correlation and prediction. Cascades have more variation
in them than do isolated airfoils; for example, their blade cambers 0 and
blade shapes vary much more and they have the additional variables of
stagger angle y and spacing-to-chord ratio 8/c. It is not surprising then
that attempts are made to correlate and predict cascade performance in
a relatively simple way. A blade designer wishes to know what turning
angles or lift coefficients he is likely to obtain from given cascades over a
design incidence & range of about -5* to +50, with efficient operation.
Efficient operation is defined by the use of "nominal" or maximum lift/
drag conditions already mentioned in Art. 2. One of the earliest attempts
at correlation over a wide range of conditions for compressor blades was
made by Howell [11 in 1942; more modern versions of the curves are given
in [56,106]. Excluding the earlier steam turbine investigations, Zweifel [42]
in 1945 deduced rules for the spacing of turbine blades based on the fact
that the optimum spacing was specified by a loading coefficient or factor
equivalent to the lift coefficient based on the exit velocity V:. Independ-
ently, Howell and Carter [43] in 1946 used a theoretical approach similar
to Zweifel's for compressor and turbine cascades, and used it again in
[592,1071.

All the previuusly mentioned, generalized cascade data are in the
nature of recommended design deflections and lift coefficients and are
not of universal application. In [37] Carter gives probably the most uni-
versal attempt to generalize low speed cascade data and covers a very
wide range of compressor and turbine conditions. Again, Ainley and
Mathieson [1081 consider turbine cascade correlation in their examination
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of the flow and pressure losses in blade rows of axial flow turbines. More
advanced methods of prediction of lift coefficient and losses are those
dependent on actual theoretically determined pressure distributions
around the airfoils such as in (19,99,85,89]. Davis (63] suggests a method
of correlating axial flow compressor cascade data for airfoils of particular
families.

Some comparisons between available data. Although, as in Art. 2,

there are small differences between the turning angles r and the lift
coefficients CL for nominal anUI maximum LID conditions, it is assumed
here that they are near enough to be considered the same. The nominal
turning angle r* is taken equal to 0.8 of the low speed stalling turning
angle. The values to be discussed can be thought of as suitable general
design conditions with blade cambers chosen to give reasonable inci-
dences. In Fig. E,5a are shown compressor cascade turning angles 7
plotted for exit flow angles a2 between 500 and 00, the latter angle being
in the axial direction. The curves given are with a spacing-to-chord ratio
a/c = 1.0 for the results from [1,48,561; the results are reasonably com-
parable. Also given are the turning angles for zero incidence g = 0 de-
duced from the more universal generalizations of [87]. These turning
angles are considerably lower than those for the former results at the
lower at, and therefore, according to [87], the former design curves should
require higher blade cambers 0 than those given by a simple zero inci-
dence criterion. The various methods give somewhat different variations
of turning angles with spacing-to-chord ratio, though the values of ? in
Fig. E,5a are typical for the middle part of normal compressor blades.

Design rules for turbine blades are much more varied, as such blades
work satisfactorily over a much wider range of incidence. Because of this,
personal choice plays a more important part. Ainley and Mathieson [108]
give some comparisons with their own rules. For example, for an impulse
cascade with at = 500, at = -50*, andf 1000, the rules suggested by
Zweifel [421 and Howell and Carter [431 both happen to give a recom-
mended spacing-to-chord ratio 8/c of about 0.4 while the data of Ainley
and Mathieson (108] suggest an s/c of about 0.7. It is stated, however, in
[108] that a considerable variation of s/c is possible with a turbine cas-
cade without appreciably affecting the performance. The lift coefficient
based on the exit velocity in [42] is 0.8, while in [4] the corresponding
values are 0.9, 1.05, and 1.125 for s/c of 0.5, 0.75, and 1.0 respectively.

Turning angles and lift coefficents. To illustrate the turning angles
and lift coefficients to be expected from various compressor and turbine
cascades, the method of [43,52,107] is taken. This method has a simple
theoretical conception, based on pressure distributions, which is discussed
in [438], and it applies with reasonable accuracy for both compressors and
turbines over a wide range of conditions. Briefly, it involves a loading
coefficient or factor equivalent to the lift coefficient, based on the exit
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Fig. E,5a. Comparisons of compressor cascade turning

angles for different exit flow angles.

velocity V2 with a correction for spacing-to-chord ratio s/c, due to the
"blockage" effect of finite thickness blades. The final relationship pro-
duced is

CLy =, 1.125 [() ] 51

or with Eq. 2-2,

CL 2 (C) (tan a, - tan ai)(cos a.)

S1.125 (Co [6 (); (5-2)
coo 05 / [ 5(8) )
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Fig. E,5b. Generalized data on turning angles.
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Fig. E,6c. Generalized data on lift coefficients.
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From Eq. 5-2 both the turning angle 7 = al - a2 and the normal lift
coetficient CL can be obtained, and the respective results of such a calcu-
lation are given in Fig. E,5b and E,5c for the exit flow angle a2 range of
50 ° to -70* and for three spacing-to-chord ratios a/c of 0.5, 1.0, and 1.5.
The much higher turning angles and lift coefficients for the turbine blades
compared with the compressor blades will be noted. The CL's are of the
order of 1.5 to 2.5 for turbines and 0.6 to 1.0 for compressors, depending
somewhat on the exit flow angles and the spacing-to-chord ratios for the
cascads. These results apply to Reynolds numbers Re of about 2 to
5 X 101 when based on inlet velocities for compressors and exit velocities
for turbines.

In applying cascade data to compressors, the work done per unit flow
or the stage temperature rise is proportional [561 to the product of the
tangential velocity of the rotor, the axial velocity, and tan ai - tan a2.
In [561 the approximate rule given below is suggested:

1.55
tan aL - tan a2 = 1 + 1.5(s/) (5-3)

Eq. 5-3 is said to apply, for a2 between 400 and 0° , with fair accuracy to
the nominal turning angle r* curves of (561. This expression suggests that
the tangent difference of the inlet angle al and the exit angle a2 is
largely independent of a2 for normally used compressor cascades.
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SECTION F

THE AXIAL COMPRESSOR STAGE

W. D. RANNIE

FI. Introduction. The aerodynamic design of axial compressors is
accomplished by an appropriate synthesis of the results of two-dimen-
sional cascade investigations and of three-dimensional flow theory for the
turbomachine. In principle, the procedure is similar to the combination
of two-dimensional airfoil theory and experiment with three-dimensional
wing theory for the design of airplane wings.

The analogy between the turbomachine theory and the wing theory
has already been pointed out in the introduction to Sec. C. In both theo-
ries, the primary problem is that of finding the velocity induced at an
arbitrary point on an airfoil surface by the vorticity field associated with
all other airfoil surfaces. In both theories, linearizing approximations are
introduced to give tractable mathematical problems. Although the tech-
niques employed in the two theories are necessarily quite different, the
solutions of the problems have similar character. In both, the first order
approximations are quite adequate for general application, and there is
little need for more exact analysis.

If one compares the two-dimensional cascade data required in the
design of compressors with the two-dimensional airfoil data required in
the design of airplane wings, similarities are again evident.

Experiments are essential for both, although potential theory and
boundary layer theory are invaluable as guides and for interpretation
of the experiments. Theory is somewhat less useful for cascades than for
airfoils because the range of Reynolds numbers for compressor blades is
much lower than for airplane wings; hence potential flow gives a poorer
representation of actual flow for a compressor blade than for a wing.

In spite of the close similarities in the information required and the
procedures used in the respective designs, further examination shows that
the problems of compressor design are very different from those of wing
design. Put in its crudest and simplest terms, this results from the fact
that the airplane wing is an airfoil of finite span, whereas a compressor
blade is an airfoil with infinite end plates. Because of induced drag, the
airplane wing has its maximum lift-to-drag ratio at a moderate lift coef-
ficient. There is no induced drag on a compressor blade, so its maximum
lift-to-drag ratio occurs at essentially maximum lift. One can readily
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ima-.gine the problems that would beset an airplane designer if the opti-
muim eoomdition for cruise were just on the verge of stall; for the com-
preesor designer, this is the normal state of affairs.

I1'he conditions for stalling of the compressor blades are of such domi-
nat-.ing imaportance in compressor design that it is essential to understand
hov~v they arise. The aspect ratios of compressor blades are usually in the
ranage of 2 to 4, although lower or higher values are required occasionally.
It IWas been found that the combination of three-dimensional flow theory
anol twr-dimensional cascade characteristics gives an adequate descrip-
tio- -n of the flow over the central 80 per cent or more of the blade height.
At each end of the blade is a region of flow that will be called the wall
layer, -where the flow phenomena are so complex that they cannot be
demscrib,ed even approximately in terms of the three-dimensional theory
or the -two-dimensional cascade characteristics. The thickness of the wall
la:yer its somewhat indefinite and it varies with circumstances, but under
ncrrmal conditions it will not amount to more than a rather small fraction
of - the blade chord.

Te circulation around the blade vanishes at the wall, whether a tip
cl._earaiace is present or not. However, the velocity induced by the shed
vorticity is small outside of a highly localized region very close to the
wv'all. In order to satisfy the wall boundary condition, the flow behaves
a:s if e qual, and opposite vorticity appears on the other side of the wall;
tllhe combined effects die out rapidly with distance and have no appreci-
a-.ble i fhluence outside the wall region. In addition to this vorticity field
v-vithiin the wall layer, there are strong distortions in velocity produced
1=3y tkve wall boundary layer passing through the blade row. The direction
ca:f flcw may be quite different from that outside the wall region and
m ay -vary.

It is fortunate indeed that the very complex flow within the wall layer
ifs not the dominating influence on compressor performance, otherwise
-analysis would be almost impossible. As was mentioned above, the wall
Slayer thickness is normally a fraction of the blade chord length; hence the
stati c pressure within the wall layer cannot be very different from the
pressure at the edge of the central flow region. The flow within the wall
layer simply conforms to the pressure distribution at its outer boundary,
as lcong as the outer flow is sufficiently stable to small disturbances. Local
separation may occur within the wall layer, and losses are certainly severe
in tlhat region. However, the wall layer thickness does not increase be-
yoa cd some limiting thickness from one stage to the next if the central
part of the blade is not too heavily loaded. Since there is a strong adverse
pressure gradient through each blade row, this behavior is quite different
from that of a boundary layer in a simple diffuser. Evidently the action
of t.he rotor blade rows keeps the thickness of the wall layer constant by
direct addition of energy or a very effective mixing process.
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The flow over the central 80 per cent or so of the blade height con-
trols the wall layer flow, at least to the extent of preventing unlimited
growth in the layer thickness, only if the incidence angles for all blade
sections in the central region are well below the stalling angles. However,
a compressor operates at best efficiency if it is designed so that the blades
are almost stalled. The incentive to push the blade loading to the limit is
so great that the prediction of stall becomes the most important factor in
compressor design.

Two-dimensional cascade experiments are quite reliable for predicting
compressor blade section performance below stalling incidence, but not so
reliable for determination of the stall point, even under the most favor-
able conditions. As in single airfoils, the stalling angle is sensitive to vari-
ations of Reynolds number and to turbulence and other unsteadiness in
the approaching stream; and it is almost impossible to reproduce the free
stream conditions of a compressor in a two-dimensional cascade test. The
influence of the wall layer becomes greater as the flow outside the layer
approaches stalling incidence. Local regions of separated flow always
occur within the wall layer, and these become potent triggering sources
as the flow at the edge of the layer nears an unstable condition. When
stall does occur, starting at one end of the compressor blade, it is abrupt
and severe, with a large patch of periodically separating flow extending
over an appreciable fraction of the blade height, or even over the entire
blade.

The prospect of understanding all details of the flow in axial com-
pressors is certainly hopeless if the description in the preceding para-
graphs is even approximately correct. One can say that all details of the
flow are not of equal importance and we should be concerned only with
those that are significant. Howell [1] wrote a 10-page paper on the design
of axial compressors in 1945, published by the Institution of Mechanical
Engineers (London). It was widely read and accepted as a useful design
manual. In 1956, the NACA (1 put out a design manual of over 1000
pages. A direct comparison is not quite fair, but it does give an indication
that in the intervening years our knowledge increased tremendously.
When one examines the new knowledge, however, it becomes apparent
that there has been a much more rapid accumulation of knowledge of
things that might be important than elimination of things found to be
unimportant. A discussion of compressor design problems must be selec-
tive and the selection is still very much an individual choice.

F,2. Cascade Characteristics. The axial flow turbomachine consists
of one or more rows of rotating and stationary blades in an annular duct.
A typical blade row is shown in Fig. F,2a. Since the flow is confined by
the cylindrical inner and outer walls, all streamlines lie on approximately
cylindrical surfaces. Advantage is taken of this situation to introduce a
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simplifying approximation into the theory of the turbomachine. One im-
agines a cylindrical surface through the blade row, at radius r say, to be
cut and straightened so that the contours of the blade sections originally
on the cylindrical surface become those for a two-dimensional cascade.
The derived cascade is assumed to have an infinite number of blades,
since there is no beginning or end for the annular cascade. The two-
dimensional flow characteristics of the derived cascade are identified with
the flow characteristics of the blade sections at radius r in the annular
cascade of the turbomachine.

There are obvious limitations on the validity of identifying the blade
characteristics at each radius with those of a corresponding two-dimen-
sional cascade (see Sec. B). The interference effects of the blades are not
the same in the annular cascade as in the straight cascade because of the
divergence of the blades in the former. However, if the aspect ratio (blade
height/blade chord) is large, one would expect the error to be small. For

Fig. F,2a. Typical annular blade row.

low solidity (blade surface area/annulus area) the divergence angle of the
blades is large, but the interference effects are small. For high solidity,
only nearby blades cause interference on any particular blade and for
these the divergence angle is low. Decreasing hub ratio will also tend to
make the identification of blade element characteristics in the annular
cascade and the corresponding two-dimensional cascade less valid.

The comparisons above were made with the assumption that the
streamlines through the annular cascade lay on circular cylinders. Such
a condition is not satisfied in general. If the flow approaching the blade
row has vorticity or if the blades shed vorticity into the downstream flow,
radial components of velocity occur in and near the blade row, giving rise
to a three-dimensional character of the flow through the blades. Again,
if the aspect ratio of the blades is large so that there is very little variation
in radial velocity through the axial length of the blade, the assumption of
two-dimensional character of the local flow appears a reasonable one.

The flow in the neighborhood of the blade ends does not have two-
dimensional character under any circumstances, because of wall friction
and the presence of wall boundary layers. However, if the aspect ratio is
high, the fraction of the blade height that is strongly influenced by wall
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effects is quite small. The fluid in the boundary layers on the blades is
subject to different centrifugal action than the fluid outside the boundary
layers. The resulting radial forces in the boundary layers are usually
stronger in rotor blade rows than in stators. Since the radial displace-
ment in the boundary layer flow is proportional to the chord, the displace-
ment as a fraction of blade height decreases as the aspect ratio increases.

The possibility of relating the blade characteristics at each blade
radius to the local flow direction and velocity immediately in front of
the blade row, independently of the blade geometry at other radii and
independently of the flow conditions elsewhere, introduces a great sim-
plification in the theory of turbomachines. From the discussion of the
preceding paragraphs, it is seen that the approximation is better with
higher blade aspect ratio and higher hub ratio. Many axial flow com-
pressors satisfy the conditions sufficiently well. Axial flow pumps, because
of strength requirements, typically have few blades, low hub ratio, and
high solidity, so that the blade aspect ratio is low. The validity of the
procedure of using two-dimensional cascade theory for the blade charac-
teristics of axial flow pumps is dubious. The procedure is, of course, quite
invalid for mixed flow and centrifugal machines.

The characteristics of two-dimensional cascades of blades for axial
turbomachines are discussed in Sec. E in considerable detail. In the
treatment to follow, the behavior of cascades will be given in simple
parametric form in terms of constants that must be determined from a
detailed knowledge of blade geometry and flow conditions. Two relations
equivalent to the two momentum equations are required to specify cas-
cade characteristics. For turbomachine applications, the most convenient
relations give leaving flow direction and total pressure loss as functions
of inlet angle.

The notation that will be used is shown in Fig. F,2b. The axial and
whirl components V, and V. are averaged values in front of, or behind,
the cascade. The averaging process is carried out so that the flow rate
perpendicular to the cascade and the flux of momentum parallel to the
cascade are correct. For incompressible, two-dimensional flow, the axial
velocity components, V., upstream and V,, downstream, are equal. The
cascade characteristics can be specified by the two equations:

tan at = A + F (tan a,) (2-1)

2Ap = K (tan a) (2-2)

where Ap0 is the loss in total pressure through the cascade, A is a con-
stant, F (tan al) and K (tan a,) are functions of the inlet angle at. In
general, the coefficients on the right-hand side of Eq. 2-1 and 2-2 are
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dependent on inlet Mach number and Reynolds number; however, this
dependence is slight except in the transonic and supersonic regimes, where
the validity of the two-dimensional approximation to blade characteris-
tics of a turbo-machine is doubtful anyway.

The flow leaving angle. The theory for irrotational, two-dimensional
flow of a perfect fluid through the cascade is not always realistic, but it
does give a systematic method for estimating the leaving angle. Accord-
ing to two-dimensional potential flow theory, the leaving angle is given
by a relation of the form

tan a 2 - A + B tan a, (2-3)

where A and B, depending on the blade shape, solidity, and stagger angle,
are constants for a given cascade. Unfortunately, the computational effort

Fig. F,2b. Velocity diagrams for stationary cascade.

required to obtain these two constants is in general so great that it is not
worthwhile. However, if the blade sections can be approximated by thin,
slightly cambered arcs of approximately parabolic shape, the constants
A and B in Eq. 2-3 above can be evaluated in terms of camber, solidity,
and stagger angle without much difficulty. The theory is given in Sec. B.
The potential theory for thin, slightly cambered airfoils is frequently sur-
prisingly accurate, although this apparent accuracy is probably fortui-
tous. By neglecting real fluid effects, the lift, and hence the magnitude of
turning, is over-estimated. On the other hand, neglect of the effect of
thickness under-estimates the turning. In single airfoils, or cascades of low
solidity, the reduction of lift from real fluid effects is larger than the in-
crease of lift from thickness effects, so the lift calculated from potential
flow around an airfoil of zero thickness is too high. For solidities of the
order of unity, the two effects appear to be of comparable magnitude and
the leaving angle from the potential theory is often very close to the

( 318 )



F,2 • CASCADE CHARACTERISUICS

measured val ue. Unfortunately, one cannot count on such cancellation
as a general rule.

For cascades of very high solidity, the leaving angle is almost inde-
pendent of the entering flow direction, so F (tan a,) 0. Potential flow
theory for cascades with solidity of unity, or even lower, gives leaving
angles that are nearly independent of inlet angles; however, in practice,
the relative insensitivity of the leaving angle is confined to the rather
narrow range of .he inlet angle corresponding to very slight separation
on the blades. For very high solidity, the leaving angle is essentially inde-
pendent of the entering angle even when separation is severe.

Total pressure loss. The dependence of the total pressure loss coef-
ficient K on tan a, resembles the dependence of the drag coefficient of an
isolated airfoil on the angle of attack; K (tan a,) is quite small over a range

K

Tan a,
Fig. F,2c. Typical presure los coefficient.

of 10° or so in a, and rises sharply outside of this range as the flow sepa-
ration becomes severe. The general behavior is indicated in Fig. F,2c (see
also Fig. E,2b). The location of the low loss region along the axis of tan ai,
and to a lesser extent the width of the region, depend upon the stagger
angle and camber of the blade section. The magnitude of the loss within
this region depends on the blade thickness and cascade solidity as well as
the stagger and camber. There appear to be no simple universal expres-
sions for losses in terms of cascade parameters, so that appeal must be
made to test results for precise information. The minimum value of K
varies over a wide range. For low solidities, K can be estimated from
single airfoil data (see below) and, for very high solidities, it can be esti-
mated by calculating friction in the blade channels.

Maximum pressure rise. The important part of the loss curve for
turbomachine practice is the region around the sharp increase at the
higher value of tan al. This corresponds to positive stall for a single air-
foil, and in the cascade represents the condition for maximum turning
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and maximum pressure rise at low total pressure loss. Since the purpose
of a compressor cascade is to develop pressure increase by conversion of
kinetic energy, it is pertinent to establish the maximum pressure rise that
can be attained for a given magnitude of inlet velocity, assuming one is
free to choose the most favorable cascade configuration. At very low
solidity, the flow separates from the blades when the turning angle is low
and hence the pressure increase small. At very high solidity, friction in
the blade passages absorbs most of the pressure increase from diffusion,
so the pressure increase is again small. At solidity of the order of unity
(say, 0.7 to 1.3), cascade experiments have shown that the pressure rise
attainable is a maximum; hence this is the range of solidity that is always
used where the number of blade rows is kept to a minimum. Strictly, it is
not the maximum pressure rise that is so important in practice, but rather
the maximum pressure that can be obtained with moderate losses. How-
ever, there is usually little difference between these two conditions.

In the turbomachine analysis that follows, it will be convenient to
have a simple criterion for maximum attainable pressure rise. Experience
with compressors indicates that, unless V/VI > v where v G-- 0.65, the
losses become excessive. Actually, Y depends on stagger angle and blade
shape, and criteria that are more satisfying from a physical point of view
have been developed. The rule above is certainly over-simplified, but it is
probably sufficiently accurate for a general analysis of turbomachine
performance.

Lift and drag. An alternative method of specifying cascade charac-
teristics is in terms of lift and drag coefficients analogous to those for
isolated airfoils. It can be shown that the vector average of the velocities
upstream and downstream of the cascade plays the role of the velocity
at infinity for an isolated airfoil, since the blade force is normal to this
velocity for an inviscid fluid. In the velocity diagram shown in Fig. F,2d,
the mean velocity and the directions of lift and drag are indicated. From
momentum balance across the cascade and the geometry of the diagram,
it is readily shown that

s a[2 V#,.- V,. V,.Vl KCL V. V2.K

[ V )V t V V

,CD

Hence the drag coefficient CD is directly proportional to the pressure loss
coefficient, while both the lift and drag contribute to turning.

For applications to the calculation of flow in axial turbomachines,
it is more convenient to specify cascade characteristics in terms of leaving
angle and pressure loss coefficient than in terms of lift and drag coef-
ficients. The advantages are particularly marked in calculation of the
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performance of specified blading. In addition, the leaving angle is so
nearly constant for solidities of the order of unity or higher that it is
the natural parameter for cascade characteristics. At low solidities, the
lift coefficient is a useful parameter because the isolated airfoil charac-
teristics can be transferred almost directly to the cascade. However, the
leaving angle is still more convenient for determination of turbomachine
performanee.

Moving cascades. The discussion of characteristics above was re-
stricted to stationary blades. As long as the flow is two-dimensional, the
results can be applied directly to cascades moving with constant speed.

Ve= (V + V)

V\

L

Ve2  Ve. Ve,
D

Fig. F,2d. Lift and drag forces.

If the cascade moves along its axis with a constant velocity Wr, repre-
senting the speed of a rotor at radius r, the velocities relative to the
cascade are shown in Fig. F,2e. The leaving angle 02 and the total pres-
sure loss Ap0 relative to the cascade are given by relations similar to those
for a stator

tan #2 = A + F (tan 01) (2-4)
2ApO

PW, = K (tan 01) (2-5)

With the configuration as shown, both pressure and kinetic energy in-
crease through the cascade, whereas in a stator, of course, the pressure
increases at the exp-nse of kinetic energy.

The rate of increase of tangential momentum per unit area through
the cascade is

W,- We,) W = PV,(Ve, - Ve,)
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wwe

Fig. F,2e. Velocity diagrams for a moving caacade.

and since the motion of the cascade is in the tangential direction alone,
the wsork input per unit area is

aV(V,- VV, Vr

the familiar Euler result. The static pressure rise through the cascade is,

from the Bernoulli equation with the addition of a loss term,

p, - pi ff( , - Me, - W!K (tan 01))

pcar(Ve, - Vs,) - Ip(Vl, - V,) - IpW!K (tan 01)

Transferring the second term on the right to the other side, the increase
in total pressure is seen to be

p- - po = pwr(V., - Ve,) - jpW K (tan 01) (2-6)

and the efficiency i can be defined in terms of total pressure rise as

A p A 1 w2_

pwr(Vo, - V,) 2 wr(Vo, -V) K (tan ) (2-7)

F,3. Axial Compressors with Large Hub Ratio. The simplest in-
troduction to the analysis of performance characteristics of axial turbo-
machines can be gained from a study of machines with large hub ratio.
In such machines, the rotor blade speed is nearly constant over the blade
height so that there is no advantage in twisting the blades. Thus per-
formance can be deduced directly from two-dimensional cascade charac-
teristics and the complexities of the three-dimensional flow theory can be
avoided. The over-all performance of compressors with moderate hub
ratio, say 0.7 or more, is predicted remarkably well by an analysis based
on the two-dimensional cascade characteristics at mid-blade height; hence,
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the methods described in this article have somewhat wider applicability
than the title implies.

An examination of cascade characteristics (e.g. Sec. E) shows that
there is a range of incidence angles of 100 or so in which the losses are
small, with sharply increasing losses at both ends of the range. As long
as all blade sections in a compressor operate within the low loss incidence
range, the performance of the machine can be predicted from the known
cascade characteristics quite satisfactorily. When the compressor oper-
ating point requires flow incidence angles that are outside the low loss
range, the over-all performance prediction becomes less reliable; this is a
result of poor representation of compressor blade characteristics by two-
dimensional cascades as flow separation progresses. The compressor oper-
ating point at which the efficiency is highest corresponds almost invari-
ably to the sharp knee of the loss curve at the higher incidence angle.
Normally, this is the "design point" for the compressor.

From the remarks above, it is evident that at least the two-dimen-
sional losses must be included in any discussion of compressor perform-
ance; otherwise the discussion has little connection with reality. In par-
ticular, there would be no definite criterion for choice of a design point
if losses were ignored. Other refinements to the analysis such as the effects
of three-dimensional flow, secondary flows, and tip clearances can be de-
ferred without dretic influence of the results, but the two-dimensional
losses are essential. The performance of various blade arrangements for
compressors is discussed in general terms in what follows. The flow is
assumed to be two-dimensional, and particular attention is paid to the
problems of choosing the design point of operation.

Performance parameters. It is convenient to introduce dimensionless
coefficients to describe the turbomachine performance characteristics.
The flow coefficient 0 is defined as

Q
0= Q (3-1)

where Q is the volume flow rate through the machine, A is the cross-
sectional area of the annulus, w is the angular velocity of the rotor, and
r is the radius of the mean blade height. The cross-sectional area of the
annulus A = 2rrb, where b is the blade height. If the flow rate per unit
area is constant over the annulus, then Q = A V. where V, is the axial
component of flow velocity and

V.
= V. (3-2)

The work coefficient-* is defined as

2P
pQ(wr) (33)
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where P is the power input to the rotor and p is the fluid density. The
work coefficient is simply the work done per unit mass of fluid reduced to
dimensionless form by the factor jwIr. When the flow is two-dimensional,
that is, when V. is uniform over the annulus,

P - pQwr(Vo., - Ve,) (3-4)

where Vo, - V, is the change in the whirl component of velocity through
the rotor. Under these circumstances, the work coefficient becomes

= 2 vs, - Ve, (3-5)

where V,, - V,, is the change in the whirl component of velocity through
the rotor.

It is important to realize that the expressions for 0 and * given by
Eq. 3-2 and 3-3 are valid only for two-dimensional flow, when V. is uni-
form over the annulus. At zero flow rate, i.e. Q - 0, the power required
to drive the compressor is zero, according to Eq. 3-4. In reality, however,
the power required to drive a compressor at zero flow rate (shut-off) is
never zero, and frequently is even larger than the power required at de-
sign flow rate for the same rotational speed. The reason for this is that
the flew is not two-dimensional at zero flow rate, but is positive over
some parts of the annulus and negative over other parts. Since the power
input P and the volume flow rate Q can be measured readily, the coef-
ficients # and * as defined by Eq. 3-1 and 3-3 can always be determined
without ambiguity. The interpretation of these coefficients as given by
Eq. 3-2 and 3-5 is valid only when the flow is known to be two-dimen-
sional. For instance, * approaches infinity as Q approaches zero in direct
measurement, whereas Eq. 3-5 predicts (incorrectly) a finite value for
at shut-off.

A third coefficient, closely connected with the work coefficient, and
actually more widely used, is the pressure coefficient p defined as

2(p - p(-)= ,r (3-6)

where p.1 - pgl is the increase in stagnation pressure produced by the
rotor. If there were no losses, and if the flow were two-dimensional, the
pressure coefficient 0 would be equal to the work coefficient T; hence, in
general,

4 = 10 (3-7)

where t is the efficiency of the rotor.
For two-dimensional flow, the work coefficient depends only on the

leaving angle from the rotor blade row, and, as was pointed out in Art. 2,
the leaving angle generally can be estimated from blade geometry with
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considerable confidence, more so than the losses. The losses must be esti-
mated in order to find the pressure coefficient, so that the later is derived
from the work coefficient rather than determined separately. In fact,
experienced designers frequently estimate over-all efficiency directly from
the blade shape, Reynolds number, and Mach number without detailed
breakdown of the various sources of loss.

Rotor with axial inlet flow. The simplest type of compressor consists
of a single rotor blade row in an annular duct. If the flow approaching

V4,.

ve

vI = vI

. (3)

(1 ) (2)

Fig. F,3a. Rotor with straightening vanes.

the rotor is axial in direction, the velocity diagram appears as shown in
Fig. F,3a. The notation is the same as in Art. 2 above. In this particular
example, V., = 0 and We, = wr; hence, tan # = wr/V, = 1/0 and
V., = wr - We, = wr - V. tan #2. Substituting into the expression (Eq.
3-5) for the work coefficient,

* - 2(1 - tan 0 2) (3-8)

where tan 0 is a function of 0 alone, of the form

tan 2= A +F

In order to simplify the discussion of performance, it will be assumed that
F(1/6) = 0, corresponding to high solidity. The minor modifications to
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the performance characteristics resulting from a more general relation
between tan ts Emd 0 will be mentioned later.

With the simplification that tan Ps = const, the relation between
and 4, is linear and 1' = 2 - 20 tan ,82. The work coefficient IF and a
quantity proportional to the power, 0* - 2P/(pAwr3) are sketched in
Fig. F,3b. The curves in the figure are good representations of actual
rotor performance when the blade solidity is high, except for low values
of 0 whereas the shut-off condition is closely approached the two-dimen-
sional flow breaks down and the theory is no longer valid. When the
blade solidity is not large, the leaving angle can be represented approxi-
mately by the relation tan 02 = A + B tan 01 (see Art. 2), and then
4' 2(1 - B) - 2A . The performance curves of Fig. F,3b are the same
shape, but the intercept on the axis . = 0 is smaller. More generally,

2.0 A 2.0

90 3
41 100

0 0 0 60

0 02

0 (0.58) 1.0 0 (0.58) 1.0

Fig. F,3b. Work and power characteristics for constant leaving angle.

with tan #2 = A + F (tan #), the curve of * vs. .0 will have a slight
curvature, with d2 4'/d,12 always less than zero.

A single rotor in a duct with axial approach flow imparts a circum-
ferential component of velocity to the flow. Although a fraction of the
velocity head of the whirl component may be converted to pressure down-
stream, the fraction is generally small unless a stator blade row behind
the rotor turns the flow back to the axial direction, at the same time con-
verting as much of the whirl velocity head to pressure as the efficiency
of the stator allows. The stator, of course, does not change the work coef-
ficient of the rotor.

The losses in the compressor can be separated into three groups,
associated with the rotor blades, the stator blades, and the duct. Al-
though the losses in any one of the groups are not strictly independent
of the configuration of components of the other groups, the interaction
is generally slight. With the notation of Art. 2, the total pressure loss
through the rotor can be expressed in the form

Ap, = pWIK,
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where the subscript r refers to the rotor. The loss coefficient K, is a func-
tion of tan alone and, hence, in this example, is a function of r/V, -
l/#. In the most convenient dimensionless form, the loss through the
rotor is then

- (1 + ')K,(#) (3-9)

Now K, is small over a range of a few degrees in the relative inlet angle 01,
and rises sharply at the endi of this range. Hence the dimensionless loss
will have a similar behavior as a function of #; Fig. F,3c illustrates a
typical example. The detailed shape of the curve can be found from two-
dimensional cascade data for the particular blade shape.

Fig. F,3c. Rotor lose coefficient.

The loss in stagnation pressure through the stator can be expressed as

p. = JpVjK.

where the loss coefficient K. is a function of tan a2 (1/h) - tan 02. In
dimensionless form, this loss becomes

2 = [(1 - tan 02)' + 0I1K(0) (3-10)

Since K. is small over a range of o corresponding to a few degrees in a ,
and further the factor multiplying K. in Eq. 3-10 does not vary rapidly
with 0, the dimensionless loss through the stator can be represented by a
graph similar to that for the rotor in Fig. F,3c. If the rotor and stator are
well matched, the regions of low loss, particularly the lower ends, will
coincide.

The magnitude of the duct loss has a definite meaning only if the
application of the turbomachine is specified. When a diffusor, elbow, or

( 327 )



F • THE AXIAL COMPRESSOR STAGE

other component is an integral part of the turbomachine system, it is
appropriate to include the component loss in a procedure for choosing
blades. The stagnation pressure loss for the system, exclusive of rotor
and stator blades, will be proportional to the square of the through-flow
velocity, i.e.,

2ApdO= Ks (3-11)

where Kd is generally constant.
Introducing the notation of Eq. 3-6 and 3-7, and collecting the indi-

vidual terms: Eq. 3-9, 3-10, and 3-11,

- I (1 -) - K,(I =K1 + ) -K [(1 - *tan P)' + I] + K do'

(3-12)

Dividing through by * 2 - 20 tan 01,

K(1 + 4-1') + K.[(I - # tan ft)' + 01] + Ks-' (3-13)
2-20tan #,

The numerator in the latter expression is small in the low-loss range of #,
provided that Kd is not a very large number, and generally increases
with 0 although the first term multiplying K. decreases with 0. The de-
nominator increases with * decreasing; hence 1 - q decreases with *
down to the value of 0 corresponding to the sharp rise in K, and K.,
reaches a minimum, and begins to increase. Since ik = j*, the maxi-
mum value of 4, occurs at a lovwer value of 0 than that corresponding to
maximum t,.

The preceding analysis is appropriate for estimating the performance
of a compressor with given blading. The choice of blading to produce a
given performance is limited by the restrictions on maximum pressure rise
discussed in Art. 2. If one accepts the simple rule for velocity ratio as
applicable to both rotor and stator, then the restrictions on the velocity
diagram are, for a stator designed for axial exit flow,

WI V.W2- >  V. >  (3-14)
W, V2

where v c 0.65. From the velocity diagram, Fig. F,3a,

W! = '00r(l + 0') W, - ar'4' + I --

V2 = 0'r'0' +2 = W22,'

and substituting into Eq. 3-14, conditions on 0 and ' become, with some
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rearrangement,

(IF 2)+ 2 > 1 (rotor) (3-15)
4y' V'Al- V')

sk < 2 V (stator) (3-16)

where Eq. 3-15 is a restriction on the flow through the rotor and Eq. 3-16
is applicable to the stator. Then the design point *, . must lie outside
the ellipse in Fig. F,3d (Eq. 3-15) and to the right of the straight line
(Eq. 3-16) to satisfy the condition of moderate loss. The figure is drawn

2.0 ~

1.6 . 4 ; ,

0.8 ... -- ~.- -- -... .. . .Ellipse 4j 2 + v 2

0 0.2 0.4 0.6 0.8 1.0

Fig. F,3d. Design point limits for rotor with straightening vanes.

with v = 0.65, but the shape of the limiting line is similar for other values
of I.

The design point for a compressor of this particular type may be
placed anywhere within the unshaded portion of Fig. F,3d, although the
efficiency will vary from point to point. The solidity for highest efficiency
will be of the order of unity along the limiting line and will decrease as
the design point moves away from the shaded region. The equation for
efficiency (Eq. 3-13) can be written in terms of 0 and *, as

_ K,(1 + 01) + K.(I,2 + 01) + KdO2 (3-17)
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Along the limiting line of Fig. F,3d, *, is related to 0 so that V becomes a
function of . alone. The coefficients K, and K. are functions of 4 as well,
since the optimum rotor and stator cascades vary with the design point.
However, the variation of K, or K. with # is not very great, and an ex-
amination of the expression (Eq. 3-17) shows that ,q is small when # is
very small and small again when 0 is large. Hence I is a maximum at
some intermediate value of #, although the precise value cannot be deter-
mined unless K., K., and Kd are specified. Since these coefficients are not

V3' ' ll-

\%

-5 13 -

Fig. F,3e. Rotor with prerotation vanes.

readily expressed in analytical form as functions of .0, the calculation of
maximum ,q is best done graphically. Usually the maximum efficiency
occurs in the range 0.3 < 0 < 0.5.

Rotor with prerotation vanes. A second, very common type of single-
stage blower has a row of prerotation vanes in front of the rotor. The
advantage of this arrangement is that it is possible to obtain a higher
relative velocity at the rotor and hence reduce the rotor rotational speed
required for a given pressure rise. The cascade arrangement and velocity
diagram are shown in Fig. F,3e. The convention used above, measuring
Ve positive upwards and We positive downwards, is retained. Normally,
at design operation, the absolute exit velocity from the rotor, V3, would
be in the axial direction.
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The work done by the rotor is given by the work coefi.cient * where

'- 2 V,, - Ve,
Wr

for two-dimensional flow. Since Vs, = V, tan as (where as . is ne5gative in
this example) and V., w wr - V, tan fl. where 03 is the learwing &Angle rela-
tive to the rotor,

'I' = 2 - 2(tan 3s + tan a2)0 (3-18)
This is the general result for prescribed leaving angles from.. the pre-
rotation vanes and the rotor. Since the direction of flor. entering the

2.0

% 4J

ton o:2 + tor-i P3

Fig. F,3f. Work coefficient for rotor with prerotation - vaes.
vanes is constant (axial), tan as is independent of thee flor. rate. The
leaving angle from the rotor is given by a relation of tkLe forxn tan 03

A + F (tan 02) where tan 02 = (Wr + V,)/V, = (1/0) -- taXI Ci.
If the rotor cascade is such that the leaving angle is mtppruxiinated by

the potential flow theory, so tan 03 = A + B tan 2 = A + B tan as +
(B/), then

*' =2(1-B)-2[A + (B+ 1) tana] 0 (3-19)
and the performance curve is again a straight line in t-ne t, 0 diagram.
For a rotor of very high solidity, B = 0 as shown in F "ig. F ,3f, the effi-
ciency can be expressed in terms of 0 and %k as for the parevictus example,
although the form is modified slightly and the contribmutiorx of residual
swirl downstream of the rotor is neglected.

(K. + K, + Kd)O' + -rK,(*I + 2)' (3-20)
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The limitation on the maximum amount of diffusion through the rotor
cascade can be applied as above. There is no restriction on the prerotation
vanes, since they accelerate the flow. Assuming that the rotor operates at
design condition so tan 0, - 1/#, the limiting criterion is W,/Ws > Y,
or in terms of # and I:

- <1 (3-21)
4/0t  1/(1 - PS)

Hence the limiting line is a branch of a hyperbola with center at
# = 0, * = 2; semiaxes 2/t and 1/N/1 -v' and asymptote * + 2 - .2 N/T -*vl/, . Any point below and to the right of the hyperbola repre-
sents a possible design point (see Fig. F,3g for , - 0.65). Comparison

2.0,"

Hyperbola 4=

1.6

1.4 -.

1.2 , ... .

0 0.2 0.4 0.6 0.8 1.0

Fig. F,3g. Design point limits for rotor with prerotation vanes.

with Fig. F,3d shows that the compressor with prerotation vanes followed
by a rotor has considerably more flexibility in choice of the design point
than the compressor with rotor followed by straightening vanes if <
0.8. At higher values of #, the latter type allows larger T; however, this
advantage is rather academic because the losses are generally so severe at
flow coefficients greater than 0.8 hat such design points are undesirable.

Compresaor with repeating flow. The two types of compressor dis-
cussed above are suitable for single-stage design with axial entering and
leaving flow. For multistage design, it is not necessary to have axial flow
between any pair of blade rows; so an extra degree of freedom is intro-
duced. The diagram, Fig. F,3h, shows a typical arrangement, with the
flow repeating its pattern after each two rows. The two types above are
special cases of this more general blade arrangement, the first correspond-
ing to a, = 0 in Fig. F,3h, the second to as = 0.

The work coefficient for the repeating stage is given by the relations
4, eI2 WEs -We' = 2 V#' - V, = 2 r - Ve, -W,,

wr Wr Wr
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4V,

S I1)21) 11

Fig. F,3h. Rotor and stator for repeating flow.

or in terms of the leaving angles 01 and a, for rotor and stator,
respectively,

q7=2 - 2(tan 02 + tan a)# (3-22)

If tan 02 =f A, +{ B, tan 0, and tan a, - A. +t BA tan a2 with A's and B's
constant, as is suggested by potential theory, *, is again linear in#

2 A-B - BA + BA -. A, + A. - A.B, - A.B. 0 (-3
¢ 2 1 - B, -2 I - B.B. (-3

where B, = B. = 0 for high solidity. The stage efficiency can be ex-
pressed in terms of # and * as

-1--KA01 + (I - qs tan a)2] + K.[- 1 -+ (J*I + -0 tan a) 2] + Kd.02

(3-24)

The duct loss coefficient Kd is Small if there are many stages, since the

major duct losses occur in front of, and behind, the blade rows.

The limitation on maximum diffusion through the rotor is WslW I > ,

and through the stator V/ V2 > . In terms of qs and *,, these conditions

become +, (+ - 2(tan a - + ta () (3-22)
cons+ - 0 tan as) t * iailr) i -

1(l -tan al) > , 1 (stator) (3-26)

0' + ( 0 tan a + .l' +
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The inequalities above contain a parameter tan a,, so that they give a
family of limiting lines as tan a, is varied. The stator limit is a straight
line, whereas the rotor limit is an ellipse or hyperbola with axes at an
angle to the axes of 0 and t'. A particularly simple situation arises if rotor
and stator limits are met simultaneously. Then tan al 1

2.8

2.4

2.0

Y1.6 _

1..2.4 06 0. .

(-2:lps - +22 * 1 1(-7

(12 I2/'l- )2
Theliitig inewih 0.65 is 4 shw inFi .8 , 1fo .opaionwt

Fig. F,3dian F,3. Theeffinc oin h limit ymtigl lin sotindfo
Eq. 3-24 vocuitutdigrtan ecme andmeapplying Eq.3-7dithn (Equality5

4, -K 2d (328
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For the stage efficiency in a multistage compressor, the last term on the
right should be dropped. Then the efficiency is not a direct function of
the flow coefficient, but depends on 0 only through the loss coefficient K,,
which has in turn a weak dependence on*.

F,4. Axial Compressors with Small Hub Ratios. The hub ratios
of compressors have decreased over the years as the volume flow rate for
a given frontal area was raised. This trend led to difficulties, because it
was desirable to keep the total pressure rise uniform from hub to casing,
and the large difference of rotor blade velocity over the blade height was
incompatible with constant work input. Three-dimensional flow theories
played a major role in the development of compressors with low hub
ratio. Actually, this is perhaps the sole instance in the history of axial
compressors where an important design concept came from purely theo-
retical investigations.

The three-dimensional flow theories are developed in detail in Sec. C.
The applications of all ramifications of these theories to compressor de-
sign would require a very lengthy treatment; hence we will discuss only
the major applications, with relatively simple examples illustrating their
importance.

Vortex flow pattern. The simplest flow pattern that is of any interest
for compressors is a simple vortex whirl distribution with a constant axial
velocity. The total pressure in such a flow is independent of radius, and
the flow is two-dimensional on cylindrical surfaces. As the flow passes
through a blade row the strength of the circulation of the basic vortex is
changed. This was the type of flow pattern that was used in all low speed
fans and pumps and is still the most practical for most single-stage ma-
chines. The first axial compressor designs were based on vortex flow
patterns, and there are some advantages to this. In particular, if the
blade height is chosen to give constant axial velocity throughout the
machine, the same blades can be used for all stages if similar blade sec-
tions are kept at the same radius.

The major disadvantage with the vortex flow pattern appears only if
the hub ratio is small. For instance, Fig. F,4a shows the velocity dia-
grams at three radii for a multistage compressor with a hub ratio of 0.5.
It is convenient to introduce the dimensionless radius t = r/R and dimen-
sionless velocity components 0 = V5/wR, X = Ve,/wR, X2 = Ve,/R
where R is the rotor tip radius. Then the work coefficient is *, =
2t(XI - X2) and the radius t. at which the velocity diagram is sym-
metrical is given by the condition t. = X + X2. Hence for the vortex
flow pattern

= 3

( 33 5 )



F • THE AXIAL COMPRESSOR STAGE

The velocity diagrams shown correspond to * - 0.5, *- 0.4, and
e. - 0.75. It is clear that the rotor hub would be in serious difficulties.
Decreasing J. to pull the rotor hub triangle to the left gives some im-
provement, but the conditions for the rotor are still unacceptable. The
velocity entering the rotor at the hub is lower than is needed and the
velocity entering the rotor at the tip is higher than needed; what would be
most desirable is a shift of axial flow velocity from the casing to the hub.

Tip

,. ---'" ' \,,

Hub

Fig. F,4a. Velocity diagrams for vortex flow.

# - 0.5 J, - 0.4 t. - 0.75

Rotational flow patterns. The application of rotational flow to the
control of velocity profiles can be illustrated by physical considerations
only. Suppose that a uniform axial flow approaches a row of stationary
vanes that impart a whirl to the flow. The distributions of axial and
whirl components of velocity for a vortex flow downstream of the vanes
are shown in Fig. F,4b, left. The difference in pressure between hub and
casing requires that the velocity at the hub be higher than at the casing
because the total pressure is uniform behind the vanes, which are here
assumed frictionless. Fig. F,4b, middle, shows the distributions when the
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whirl velocity is the same as in Fig. F,4b, left, at the mean radius but
now increases with the radius. The pressure difference between hub and
casing is approximately the same as before; hence the resultant velocities
at hub and casing cannot be much different. With the whirl velocities
now small at the hub and large at the casing, the axial component must
increase at the hub and decrease outwards to give the same static and
total pressure as for the vortex flow pattern. The reverse occurs for a
whirl distribution that decreases outward faster than for a vortex, Fig.
F,4b, right.

As can be seen from this illustration, fixing the whirl distribution
determines the direction of flow behind the vanes as well as the axial
velocity distribution. Subject only to the continuity restriction on the

-t V,

Fig. F,4b. Components of velocity leaving stator.

axial component of velocity, any one of the three can be chosen arbi-
trarily, thereby determining the other two. Suppose now that the flow
from the vanes passes through a rotor that adds the same total pressure
increment at all radii, again without losses. This is equivalent to adding
a whirl increment that is inversely proportional to the radius. The pres-
sure difference from hub to casing is larger than in front of the rotor.
The vortex flow leaves the rotor as another vortex flow, as shown in Fig.
F,4c. The flow with a whirl increasing with the radius before entering
the rotor has the same whirl increment upon leaving, but as it is the
square of the whirl component that enters in the Bernoulli equation, the
contribution of the whirl component is less at the root and greater at the
tip than for the original vortex flow. Hence the axial component increases
at the hub and decreases at the casing to compensate, as shown in Fig.
F,4c, middle. Again, the reverse occurs in the third example.

In a rotational flow with constant total pressure everywhere, the
vortex lines are parallel to the streamlines. This may be shown by the
following argument. The vorticity components here are

ld
=fr - (rVe)
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in the axial direction and
dV,
dr

in the whirl direction; the condition that the streamlines and vortex lines
are parallel is

V. d __W- d (rVo) + V, d.= 0
rdr dr

and since dp/dr = pV'/r, we have p/p + J(V + V') - const. Radial
components of velocity have been neglected in the analysis although it is
clear they must appear if the axial velocity distribution changes. For the
time being it will be assumed that blade rows are separated sufficiently
so the radial components of velocity are zero at intermediate stations

v2

Fig. F,4c. Components of velocity leaving rotor.

between the rows. Behind the rotor the streamlines, and hence the vortex
lines, are at a larger angle to the axis than in front of the rotor. Hence
the whirl component of vorticity is larger behind and therefore the axial
velocity gradient increases after the rotor.

Clearly, a whirl velocity that increases with radius is the type needed
to improve the velocity diagram in Fig. F,4a. Choosing Vo,/Ro =f N, = it
where P, is a constant, then

,V =f Ki - Alt' (4-1)
with a constant Ki that must satisfy the continuity equation

f~lvrl -YIf dt =f j(1 - tj)j (4-2)

where n is the average flow coefficient in the annulus. Then for a con-
stant work coefficient o, v2 -- Xit + (r/2) behin at er ( f/2r) and

2! = K ' - viq In (4-3)

t 3d8 2
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where K: is determined from the continuity condition by numerical inte-
gration. The velocity diagrams with = 0.50, *, = 0.4, and X, + Xt --
at e - e, for comparison with Fig. F,4a are shown in Fig. F,4d. The im-
provement over the previous example, particularly in the rotor, is very
obvious.

Another choice of whirl velocity distribution would lead to different
velocity diagrams, but once a satisfactory type of distribution is found,
there will be little to gain from minor modifications. An extra degr-ee of

11i

- 0.5, - 0.4, X, - - t at -

flexibility is added if the total pressure can be varied radially. However,

this can be accomplished efficiently only through a rotor, so that there is

no advantage for the flow approaching the first rotor where conditions

are usually most critical.
Axial velocities near blade rows in rotational flow. The axial velocity

changes in going through the rotor or stator blade rows if the flow is

rotational; if one chooses distributions far upstream and far downstream

of the row, one must know the distribution at the blade row in order to

design blading to produce the desired flow. From linearized three-dimen-

sional flow theory, it can be shown that the axial velocity at an actuating

disk representing the blade row is the average of upstream and down-

stream axial components. If the blade extends over a finite axial distance,
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one needs to know the axial velocity at leading and trailing edges, at least,
for design of the blading. The three-dimensional flow theory gives the
velocities everywhere, but in its most general form it involves elaborate
calculation. A very simplified form of the theory, however, can give
results that are sufficiently accurate for all practical purposes.

Assume that we have a two-dimensional cascade of finite span, but
one in which the blades are twisted. Represent the blade row by an
actuating plane for the moment, and assume that the flow is rotational.
Then the axial and "radial" components of velocity can be represented by

V, = - A~eT' coos ny + V,, X <0

V. = A e."' cosrny + V., x >0

(4-4)

V, = 2 A-',5 sin ly Z < 0
rli|

V, = Ae - 1%" sin Wny X > 0

where V.,(y) and V,,(y) are the axial components far upstream and far
downstream, respectively. The channel width is then taken equal to
unity in these expressions. The coefficients A. can be determined from

V., - V., = -2 A. cosirry (4-5)
7J-I

equivalent to the continuity condition across the simulated blade row.
Eq. 4-4 satisfy the conditions

a- V" +  - -_ 0 (4-6)
ax ay

oV. OVa V dV,,
Oy Ox dx

dx (4-7)
0 V, a V, d V,, X>0(47

dv, x>O

Hence they satisfy the linearized equations of motion upstream and down-
stream. The last pair of equations states that the vorticity is constant
along the mean streamlines, as for linearized rotational flow.
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If V,, - V., is linear in y and of the form V,, - V,, - K(y - ),
then the Fourier coefficients from Eq. 4-5 are

2K 1
A - -- fornodd

and
A. = 0 for n even

Hence the terms in the series decrease very rapidly, and retaining the
first term alone will give an error of only 10 per cent. Then we have

2KV= V,, +-je- ecosul x >0

but this term gives a poor approximation to V. at x = 0, since then
V. = J(V., + V,). However, if we put

v. Vl V,- V.(4)2

the value of V. is correct at z = 0, it is correct at z = , and it con-
tains the exponential factor that was shown to be most important in the
Fourier expansion; there is a similar formula for x less than zero, i.e.

V, = Vo, + V.V. e+- x <V

Suppose that the blade row extends axially from z = 0 to z = a
and is loaded in the x direction with a distribution (1/a)f(x) where
(1/a)f f(z)dx = 1. Then superimposing the actuator disk solutions, an
elementary calculation gives

V. = V., + }(V, - V.,)e-ltbF () x <0

V. = V, - (V., - V.,)e-'tG () > a

where

F ()= f(E)e-wild

The functions F and G are plotted in Fig. F,4e, for simple loadings shown
in the shaded diagrams

( 341 )



F - 7HE AXIAL .COMPItESSOR STAGE

VV, 2 =V.0 + AV.

0, -V. V.s + JAV2Flb/ol--bx<

20.I GVG~b/-(b/o) =af'

0
_0 a

0., O'J (d I
LL__

1 2 3 4 5 6

b/a

Fig. F,4e. Blade row interference factors.

F,5. Secondary Flows and Stalling in Axial Compressors. The
previous articles have given an account of the flow in axial compressors
based on an axially symmetric flow distribution and an infinite number
of blades. The major flow patterns for unstalled operation are described
remarkably well in such terms but, of course, it is necessary to take into
account the finite number of blades, since the interaction of the wall
boundary layers with the individual blade channels, the tip clearance
leakage, and the behavior of the blade boundary layers cannot be repre-
sented adequately by an axially symmetric flow. Some of the asymmetric
flows are discussed in this article, with particular attention given to those
that are best understood, or if not as yet well understood, of major im-
portance. A number of the asymmetric phenomena have been studied
separately, although in practice they are not simply additive and may
have strong interactions. The literature in this field is very extensive;
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unfortunately, very little of it can be considered definitive at the present
time.

Secondary flow. The assumption of an infinite number of blades in
turbomachine theory is quite satisfactory if the radial variation of veloc-
ity is small over a radial distance comparable with the blade gap, since
two-dimensional cascade theory can be applied locally at each radius.
However, the thickness of the wall boundary layer is generally of the
same order as the blade gap, and with a large variation of velocity
through the boundary layer the influence of the finite blade gap becomes
important.

The nature of the flow distribution through the blade row can be
understood qualitatively from a simple model. Imagine a boundary layer
flow approaching a two-dimensional cascade, as shown in Fig. F,5a. We

V0

Fig. F,5a. Boundary layer flow through a blade channel.

will neglect all viscous effects (including separation), which will be im-
portant only very close to the wall and the blade surfaces. If the bound-
ary layer thickness is of the same order of magnitude or less than the
blade gap, the static pressure distribution at the wall will tend to be con-
trolled by the flow outside the boundary layer. In particular, the pres-
sure gradient within the blade row normal to the streamlines will be
Op/8n G pV'/R, where V is the velocity outside the boundary layer and
R is the radius of curvature of a streamline. The fluid in a stream filament
within the bouxdary layer has a lower approach velocity and lower veloc-
ity within the channel, and hence must have a smaller radius of curvature
of the streamline to balance the prescribed pressure gradient. As a result,
a velocity component perpendicular to the outside streamlines appears
within the blade row, directed from the high pressure side of the channel
to the low pressure side. Since the normal velocity on the blade surfaces
must remain zero, a circulatory flow of the type shown in Fig. F,Sa
develops in each blade channel.

A general analysis of the flow described above is intractable because
the flow is rotational. However, the problem can be linearized if restricted
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to small deviations from the basic two-dimensional flow outside the
boundary layer as was done by Squire and Winter [8] and Hawthorne [4].
The method we will use is somewhat different from theirs, although the
results are essentially the same.

We choose an orthogonal coordinate system based on the two-dimen-
sional flow outside the boundary layer with dimensionless coordinates a
along the streamlines, n normal to the streamlines, and r normal to the
wall. The characteristic length used for defining the dimensionless coordi-
nates is the blade gap (the ratio gap/chord - 0(1) in what follows). A
triad of unit vectors i, j, k is chosen so that i and j are in a plane parallel
to the wall, with i in the direction of 8 and j in the direction of n. Then
the two-dimensional flow through the blade row is given by the velocity
vector Vi where V and i are functions of s and n but independent of r.
Far upstream, the velocity vector is Voie and far downstream Vii, where
both vectors are constants. The continuity and irrotationality restrictions
are satisfied when the unit vectors i and j satisfy the conditions

0i 1 0V. i 0V.

SI -V 1 OV* 508 VOn On VOn

We now add a perturbation to the approaching flow so the velocity
vector far upstream is given by

Voio + Euo(0)i0 + evo()jo

where uo and vo .' O(Vo) and are functions of r alone, and e is a small
number. The component evojo is added to allow for the skewness of the
boundary layer one would expect to find when there is relative motion
of the blade rows. The vorticity in the approaching flow is then

oo -- V X (Volo + euio + ovjo) - -vo d uo j, (5-2)

It is essential to be specific about the magnitudes of the gradients duo/dr
and dvo/dt. We will take duo/dr and dvo/dr - O(Vo), corresponding to a
boundary layer thickness of the same order as the blade gap. If duo/dr
and dvo/dr - 0(eVo), the "boundary layer" is much thicker than the
blade gap and the problem is similar to that studied in the previous
article, where the flow at each radius is treated as two-dimensional. If
duo/dr and dvo/dr - 0(1/eV0), the boundary layer is thin compared with
the blade gap, and a treatment different from either of the two cases
above is required; however, the problem for the thin boundary layer is
not of much interest in the present connection.

Within the blade row and downstream, assume that the velocity
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vector can be represented by

Vi + eu (5-3)
where Jul O(Vo); then the vorticity vector is

= eV X u (5-4)

The equations of motion for a steady incompressible inviscid flow can be
written in the form

(Vi +c u) • Vo - 0- V(Vi + eu) = 0 (5-5)

This is the exact form upon eliminating the pressure. If 0 and its deriv-
atives are of order eVo, as suggested by the conditions upstream, the
second order terms in Eq. 5-5 can be neglected and one obtains

V5 a ( ) - "V(Vi) = 0 (5-6)

Letting wa = wi + w2j + wak, substituting into Eq. 5-6, carrying out the
operations with the help of the relations (Eq. 5-1) and separating into
components, one readily obtains

V o: V oV
V s - 2 -w = 0 (5-7)
O7 s On

V8oW2 OV
TiW' + Y = 0 (5-8)

V 0:-a = 0 (5-9)

These equations are in a convenient form for integration along the
streamlines.

Since wa = 0 far upstream, Eq. 5-9 shows that

(03 = 0 (5-10)

everywhere. Eq. 5-8 can be integrated immediately to give

Vo duo
*7V d" 51

satisfying the condition upstream. Eq. 5-7 can then be written

V, ( W1 OV Vo duoas V/ a- 2 n V dr

and integrating along the streamlines,

Cs=2eVfduo V OV d V - (5-12)
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Hence the vorticity distribution can be evaluated everywhere if the two-
dimensional unperturbed flow is known. Since 8V/On - - V/R where R
is the radius of curvature of the streamline (with n increasing away from
the center of curvature), the integral in Eq. 5-12 can be replaced by
fo(1/V)de where 0 is the angle the streamline makes with its initial
direction. Then the vorticity distribution downstream of the blade row
can be approximated by

duo VoV 1  dVo V,to I -2e- A6 - e V

Vo duo
Wo2 -V ,I d p

C03 0 (5-13)

where V7 is the average velocity through the blade row and A8 is the total
turning angle. To this approximation w is a function of r alone down-
stream of the blade row.

Although the expressions (Eq. 5-13) above represent a good approxi-
mation to the vorticity distribution downstream of a blade passage, these
alone do not solve the problem completely. The complete solution ob-
tained by integrating the vorticity equations through the blade row must
include an arbitrary irrotational flow as well. The irrotational part of the
solution is required to satisfy the boundary condition of zero normal
velocity on the blade surfaces and results from bound vorticity in the
blades and trailing vortex sheets that are induced by the nonuniform
approach flow. Apparently the problem has not yet been solved in an
entirely satisfactory manner.

The irrotational perturbation induced within the blade row must dis-
appear a short distance downstream, so one can expect that the pertur-
bation velocities behind the trailing edges of the blades are approximated
reasonably well by the vorticity distribution given by Eq. 5-13. The
assumption made in [31 and implicitly assumed in most analyses of the
problem is that the boundaries of the flow that emerges from a particular
blade are nearly plane cylindrical surfaces normal to the wall. Then the
flow in a normal cross section of the extension of the blade channel down-
stream is approximately that resulting from a vorticity distribution pre-
scribed by the first of Eq. 5-13 with the boundary conditions that the
normal component of the velocity is zero on the boundary of the semi-
infinite channel as shown in Fig. F,5b, where the coordinate denoted pre-
viously by n is replaced by ,q and b is the channel width. The resulting
flow field is the one that would be produced if long, straight parallel walls
extended downstream from the blade trailing edges. However, the vortex
sheets between channels may not be represented very well by the flow
field, because the boundary condition on the vortex sheets is that the
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pressure is continuous across them, rather than the normal velocity
vanishing.

The two-dimensional flow resulting from the vorticity distribution W,
in the semi-infinite channel can be found readily by applying the appro-
priate Green's function. In the approximate form for al in Eq. 5-13, the

oldl 4

/ $
Fi.Fb Cane rosflwdontra o inep/ae

Fig.d and ,5d. hannte comone ontre of lyae givenagby

2 ~sin (2n +1),/b,1 2 sn (2f+1

2n + I) b 2

exp (2 + b~ ' dr' + 2 exp [ 2 + b )i W Jo

isinh [(2n +- 1)1,.jr].4 j (5-14)

2 W o 2 1)121/b 1 in (2n + 1) r fw(r')
W; L~ 2n +1 2 sih

exp (2n + 1) irp] dr - 2 expjj 2n + I~ fr WI(W)

Sinh (n I)v r, ~drP (5-15)

The series in these expressions converge rapidly, and ordinarily only the
first one or two terms are required.

As an example, the velocity profiles for e = 1, z', = 0, and uo
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- V0(l - t) in 0 < r < 1 and uo = 0 for r > 1 are shown in Fig. F,5c.
There is an appreciable overturning in the middle part of the channel
close to the wall.

The analysis above breaks down very close to the wall where viscous
effects predominate, but agrees remarkably well with experiment over
the outer part of the wall boundary layer as shown by Squire and Winter
[18], Hawthorne [41, Armstrong [5], and others. Briceland [6] found almost
perfect agreement between theory and experiment when he took into
account the shift of the streamlines by an approximate calculation. The
shift of the streamlines is a second order effect in the theory, but Haw-
thorne and Armstrong [7] have shown that it is more important to allow

u component v component

Fig. F,5c. Secondary flow velocities downstream of a blade channel.

u, - -(Vo/2)(1 - r), vo - 0, e - 1, Ae - 25 °, and VI/V* - 0.75.

for the shift than to refine the calculations of the nominally first order
effects.

Three-dimensional boundary layer theory has been applied to the
flow conditions that approximate those in compressors, for instance by
Mager [8] and Sears [9]. Many configurations of boundary layer flow
were examined visually at the NACA by Hansen, Herzig, and Costello
[101, and others. These experiments showed clearly the character of the
flow very close to the wall. In most applications to compressors at high
Reynolds numbers, so little of the total flow through the compressor is
contained in the regions very close to the boundaries that the direct
viscous effects seem unimportant compared with other phenomena.

Flow through blade tip clearances. The losses that arise from leakage
through the clearances at the tips of unshrouded blades in multistage
axial compressors are frequently quite large in comparison with other
losses resulting from viscous effects. Mechanically, it is difficult to avoid
large tip clearances in high speed compressors because of differences in
thermal expansion in the rotor and stator.
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The discussion of tip clearance flows below will be confined to clear-
ance gaps that are a small fraction of the blade chord. The lifting line
approximation to the blade is certainly not applicable; rather the clear-
ance flow is analogous to the flow through a narrow chordwise gap in
an infinite wing. If viscous effects are neglected, the plane of symmetry
through the center of the gap in the wing represents the wall boundary
for the blade clearance. Considering the infinite wing with a narrow gap,
it is clear that the pressure distribution near the gap is close to that of
the two-dimensional flow far from the gap. As a result, a jet issues from
the suction surface of the wing with a velocity component normal to the
chord, which is the result of the pressure difference between pressure and
suction surfaces. Since the fluid in the jet comes from the lower side of
the wing, it will have a component of velocity in the chordwise direction
equal to that on the lower side of the wing. Hence, the resultant velocity
within the jet is equal to the velocity outside the jet, but has a different
direction.

The jet is bounded by vortex sheets, where, as can be verified readily,
the vortex strength of any strip of the sleet is exactly equal to the vortex
strength of the corresponding element of the wing chord. Hence the entire
circulation of the wing is shed in each of the vortex sheets; however,
since the vortex lines of the sheets are of equal and opposite strengths,
the influence of the shed vorticity is confined to a small region in its
immediate vicinity.

The vortex sheets that form the sides of the jet will not be in equi-
librium in general, and hence will tend to roll up. This rolling-up starts
at the edge of the sheet that emerges from the leading edge of the wing
and progresses rapidly as one goes away from the chord. A similar situ-
ation arises in three-dimensional wing theory. The trailing vortex sheet
behind a wing with elliptic loading is in equilibrium when the sheet is flat,
but is unstable to small disturbances and eventually rolls up. If the load-
ing is not elliptic, the sheet is not in equilibrium and will start to roll up
from the edges immediately after leaving the wing. The vortex sheets
forming the edges of the jet in the wing with a slot could be in equi-
librium for a particular chordwise loading distribution, although this too
would be unstable, most likely, and would only delay the rolling-up
process. The phenomena described here can be observed in a striking
manner in an axial flow pump operating under appropriate cavitation
conditions. Concentrated vortices cavitate and are made visible as a
streak of bubbles. The photograph, Plate F,5, is a typical example. The
small streaks indicate local concentrations of vorticity resulting from
irregularities in the distribution in the sheet. The large cavitating core
increases in diameter away from the blade showing the increasing strength
of the rolled-up sheet.

Although the behavior of the vortex sheet as it moves away from the
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blade is interesting, it does not affect appreciably the flow close to the
end of the blade. It is difficult to observe or measure the flow within
the tip clearance, but it seems reasonable to assume that the flow per-
pendicular to the chord is similar to free streamline flow through a sharp-
edged, two-dimensional slot. The solution of this problem is well known,
and if 8 is the clearance height, the final width of the jet is r8/(r + 2),
as shown in Fig. F,5d where pi is the pressure on the lower (pressure) side
of the chord and p, is the pressure on the upper (suction) side. Then the
mass flow leaking over the end of the blade at any chordwise position is
[i/(i- + 2)15 N/2p(pt - Pu) by direct application of Bernoulli's equation.

The force normal to the chord exerted by the blade is modified by
the clearance. With no clearance, the force is pi - p. per unit area of

0

--. Free streamline

Pg Pu

Fig. F,5d. Flow acrow blade thickne in tip clearance.

blade surface. With the clearance, there is of course no blade surface in
the clearance, but in addition the pressure on the lower side of the blade
drops from p, to p. at z = . From the free streamline model it is a simple
matter to show that

(p. - p)dz = (pi - p.) 2 a (5-16)

Hence the effective blade shortening, as far as blade force is concerned, is

- 2 2r
S+ 2 i+2

i.e. 22 per cent more than the geometrical clearance. If the tip clearance is
constant along the chord, the same relation holds for the entire blade.

As a result of the tip clearance, the work done by the rotor blades is
less than it would be for no clearance. With the model above, the power
input to the rotor is

P = rpoR' L I- &lR * dt (5-17)

where * is the work coefficient and 0 the flow coefficient at the dimen-
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sionlesa radius = r/R, with R the outer radius of the annulus. Defining

1 J*dj f~ fod (5-18)

the tip clearance reduces the average work coefficient by Af where

My 2r 2 8 *101.S +2 - R T(5-19)

with *I and 0, the work coefficient and flow coefficient near the blade tip.
Now if we assume that the pressure field near the blade tip is determined
principally by the flow through the blades outside the wall boundary
layer, we should evaluate 'l,1 by extrapolation from the main stream flow
rather than by the measured local value of 2tAV#/wR. The flow coef-
ficient 0, on the other hand, should be evaluated close to the wall, say
at a distance 6/2 from the wall, since 01 is a measure of the amount of
fluid that would be subjected to work corresponding to *I' if there were
no clearance. For this reason, the notation 0i, is introduced into Eq.
5-19.

The losses resulting from the tip clearance flow are difficult to identify
in a perfect fluid model. Certainly the rolled-up vortex sheet is the
principal mechanism for dissipation of kinetic energy of the jet through
the clearance. To determine the dissipation, it would be necessary to
follow the motion of the rolled-up vortex in great detail as it went down-
stream, and this is impractical in the complex flow field in which it is
imbedded.

We will make the assumption that the kinetic energy of the velocity
component normal to the chord is "lost" through dissipation, recognizing
that this may not be quite correct quantitatively, but that it should give
at least the correct form of dependence on compressor design parameters.
The kinetic energy of the component of velocity normal to the chord line
is 1v = Ap/p per unit mass flow rate where Ap =i P - pa is the static
pressure differential over the blade tip at any particular chordwise sta-
tion. Since the mass flow rate per unit chord length is [x/(w + 2)]pv, the
total kinetic energy for N blades is

AE + NPJ ( ) dX (5-20)

and hence the decrease in efficiency resulting from this dissipation is

AE j 2 c d

where a is the blade gap. Define the number 0 as

8 f (Ap)1d ( ')/(p)! (5-21)
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where p is the average value of Ap along the chord. Then 9 depends on
the chordwise load distribution; for uniform loading, 0 - 1, and for a
linear loading, maximum at the leading edge and dropping to zero at the
trailing edge, for instance, 0 - 1.13. In this more convenient form, the
decrease in efficiency becomes

'I .2 i (5-22)

Since Ep is the average pressure difference over the blade, it should be
evaluated in terms of the velocity triangles ignoring the wall boundary
layer, again assuming that the pressure field near the blade tip is deter-
mined by the blade action outside the wall layer.

The normal force Yp¢c on the blade is the same as the lift force L in
Fig. F,2d. Using the procedure discussed in Art. 2, one finds

A__ +- Al + X2 1
pw Ri c k -'*~ 2 ~

[+ A( q 1)(0 + X) (5-23)

where X, and X , are the dimensionless whirl components of velocity and
K is the loss coefficient for the cascade. For application to a rotor, it is
necessary to replace X, and X, by X - 2 and t - Xi, respectively, and
with some rearrangement Eq. 5-23 becomes

)2]j( 1  '2  (5-24)

For a complete stage, one must take the sum of two terms of the form
given in Eq. 5-22, one evaluated from Eq. 5-23, and the other from Eq.
5-24.

The analysis above estimates the decrease of power input and effi-
ciency for variations of tip clearance alone, ignoring all other effects.
Reliable measurements of the effect of tip clearance in the range of interest
for high performance machines are scarce since it is quite difficult to
achieve the accuracy required. For a set of rotor experiments by Williams
[11] at four different clearances, each at five flow rates, the experimental
results for the work coefficient averaged 20 per cent lower than predicted
value from Eq. 5-19 with a scatter of ±20 per cent and for decrease of
efficiency averaged 12 per cent higher than predicted by Eq. 5-22 with a

( 352 )



F " THE AXIAL COMPRESSOR STAGE

where &p is the average value of Ap along the chord. Then a depends on
the chordwise load distribution; for uniform loading, 0 - 1, and for a
linear loading, maximum at the leading edge and dropping to zero at the
trailing edge, for instance, 0 = 1.13. In this more convenient form, the
decrease in efficiency becomes

ir 2 2 0 ! p
C(P )*(52

Since Y is the average pressure difference over the blade, it should be
evaluated in terms of the velocity triangles ignoring the wall boundary
layer, again assuming that the pressure field near the blade tip is deter-
mined by the blade action outside the wall layer.

The normal force AE- on the blade is the same as the lift force L in
Fig. F,2d. Using the procedure discussed in Art. 2, one finds

1[ 1 (+ w) 1 + ) (5-23)

where X, and X2 are the dimensionless whirl componevts of velocity and
K is the loss coefficient for the cascade. For application to a rotor, it is
necessary to replace X, and X2 by - 2 and/ - X1, respectively, and
with some rearrangement Eq. 5-23 becomes

PW'Ri c2 L2/

[ ( 1 1 )1 + X 2 )] (5-24)

For a complete stage, one must take the sum of two terms of the form
given in Eq. 5-22, one evaluated from Eq. 5-23, and the other from Eq.
5-24.

The analysis above estimates the decrease of power input and effi-
ciency for variations of tip clearance alone, ignoring all other effects.
Reliable measurements of the effect of tip clearance in the range of interest
for high performance machines are scarce since it is quite difficult to
achieve the accuracy required. For a set of rotor experiments by Williams
[11] at four different clearances, each at five flow rates, the experimental
results for the work coefficient averaged 20 per cent lower than predicted
value from Eq. 5-19 with a scatter of ±20 per cent and for decrease of
efficiency averaged 12 per cent higher than predicted by Eq. 5-22 with a
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sionless radius r/R, with R the outer radius of the annulus. Defining
2 ott2 11Jot W 8

the tip clearance reduces the average work coefficient by A where

A' 2i" 2 8*qli1
- 21 - (5-19) 

with *'1 and 01 the work coefficient and flow coefficient near the blade tip.
Now if we assume that the pressure field near the blade tip is determined
principally by the flow through the blades outside the wall boundary
layer, we should evaluate *1' by extrapolation from the main stream flow
rather than by the measured local value of 2EAV/ wR. The flow coef-
ficient 0, on the other hand, should be evaluated close to the wall, say
at a distance 8/2 from the wall, since 01 is a measure of the amount of
fluid that would be subjected to work corresponding to *I if there were
no clearance. For this reason, the notation 4, is introduced into Eq.
5-19.

The losses resulting from the tip clearance flow are difficult to identify
in a perfect fluid model. Certainly the rolled-up vortex sheet is the
principal mechanism for dissipation of kinetic energy of the jet through
the clearance. To determine the dissipation, it would be necessary to
follow the motion of the rolled-up vortex in great detail as it went down-
stream, and this is impractical in the complex flow field in which it is
imbedded.

We will make the assumption that the kinetic energy of the velocity
component normal to the chord is "lost" through dissipation, recognizing
that this may not be quite correct quantitatively, but that it should give
at least the correct form of dependence on compressor design parameters.
The kinetic energy of the component of velocity normal to the chord line
is 10 = Ap/p per unit mass flow rate where Ap 1 - p. is the static
pressure differential over the blade tip at any particular chordwise sta-
tion. Since the mass flow rate per unit chord length is [8ra/(w + 2)]pv, the
total kinetic energy for N blades is

AE 1 Nap(d (5-20)

and hence the decrease in efficiency resulting from this dissipation is

A Rq=AE . 2 ci 1 AP \dfxA2(=Tl,

where s is the blade gap. Define the number 0 as

o = (Ap)Id ( )/ )t (5-21)
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scatter of ± 20 per cent. Earlier and less extensive measurements by
Rains [121 gave poorer agreement with the analysis.

The relative motion between the blade tips and the casing or hub
leads to a scraping action of the blades on the fluid at the wall and the fluid
carried with the wall. In compressors this action tends to increase the
pressure on the lower surface of the blade very close to the wall, and
hence tends to increase the losses; however, no very convincing quanti-
tative analysis has appeared.

Shroud rings with labyrinth seals fitt.ag into circumferential troughs
are used frequently on stator blades, less frequently on rotor blades. With
the same running clearances, the unshrouded blades generally give the
better efficiency. The shroud rings often require a large axial clearance to
allow for differential axial motion between rotor and stator. The circum-
ferential troughs have the effect of a severe roughness on the flow at the
wall, and in addition, the varying pressure field induced by the blades
causes radial flow in and out of the slot. This can enlarge the separated
zone that is invariably found near the corner on the suction side of a
blade meeting a stationary wall. The external fluid flow over shrouds is
more complicated, less well understood, and less predictable than the
flow near the tip of an unshrouded blade.

Stalling of axial compressors. The most significant phenomenon
affecting the performance of axial flow compressors is the stall. The diffi-
culties in predicting the flow rate at which stall first occurs have been
mentioned previously. The stalled flow itself is very complex and has
been studied intensively only in the last ten years. In the following, a
brief description of the general characteristics of stalled flow will be given
first, then a discussion of the difficulties in theories of the stall, and finally,
a more detailed description of the flow phenomena.

The axial compressor almost invariably stalls in an asymmetric
manner, with well-defined regions of the annulus severely stalled and
the remainder of the annulus unstalled. The stalled patches rotate with
uniform angular velocity in the direction of the rotor rotation at a speed
that is usually 30 to 60 per cent of the rotor speed. An example of typical
behavior is shown in Fig. F,5e.

The flow within the shaded regions is very strongly retarded, if not
blocked completely. The axial velocity outside the stalled patches is the
same as if the compressor were operating unstalled at a flow coefficient

ff= 0. where 0. corresponds to an axial velocity slightly greater than
that for maximum pressure. The transitions between the steady state
flow patterns, depicted in the figure, occur by a process of splitting or
combining of the stalled patches, but the transitions are rapid and un-
steady. As the compressor is throttled, the flow rate through the unstalled
area of the annulus is constant and the decreasing average flow rate
through the machine is accomplished by increasing the area of the stalled
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regions. At shut-off, when the net flow through the machine is zero,
periodic traveling disturbances still occur although the flow in the
"unstalled" portion is not always smooth.

The description above is typical of the behavior of a compressor with
solidity of the order of unity, but each compressor has its own minor
variations. The phenomenon is called propagating or rotating stall; the
smaller stall patches covering only a part of the radius are termed partial
or partial span stall, while a stalled region extending from hub to tip is
termed full or full span stall. The partial stall can occur at the hub or
casing, depending on the relative blade loading at root or tip in a par-
ticular compressor. Partial stall always seems to occur first as the flow
rate is decreased in compressors with a blade aspect ratio larger than 3
or 4; for aspect ratios less than 2, only full span stall is observed, although

I > 0 > '0 0 0

92 0>3 9<$"

Fig. F,5e. Typical rotating stall cell patterns.

there may be two stalled regions instead of the one that is almost in-
variably found with a higher aspect ratio. As the solidity is decreased, a
propagating disturbance is still observed as the blades stall, although the
sharp demarcation between stalled and unstalled flow disappears.

One of the first reports of propagating stall was made in 1945 by
Cheshire [13], who described the phenomenon in a centrifugal compressor.
Propagating stall in axial compressors was not described in the open liter-
ature until 1953 and 1954 [14,15,16], although the phenomenon had been
recognized earlier. It was obvious that the stalling behavior resulted from
a nonlinear mechanism, and several theories [17,18,19] were advanced to
explain it. In these theories, the equations of motion are linearized,
limiting the analysis strictly to small disturbances, and the nonlinear
character is introduced in various ways, for instance, by a time lag or
an abrupt change in lift coefficient. These theories predict a propagating
speed with a value that depends on the numerical value of parameters in
the theory, but give little more information. Since the observed disturb-
ances are always of large amplitude, the applicability of the theories is
somewhat in question.
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Propagating disturbances of small amplitude were found by Benenson
1*0,21] in annular stator cascades at suitable angles of attack. The values
of the propagating speeds, as well as the wavelengths and amplitudes of
the disturbances, fitted the assumptions postulated by the present author
121] for a quasi-steady linearized stall theory. This theory was more
general than previous linearized theories, but was not essentially differ-
ent in character. An irrotational dibLurbance moving at a constant speed
was postulated in front of a* two-dimensional cascade. Downstream, two
moving disturbances were assumed, one irrotational, the other rotational.
Satisfying the momentum equations and the continuity equation across
the cascade gave the three conditions required to determine the magni-
tudes and phase relationship of two of the three disturbances in terms of
the other and to determine the propagating speed. The influence of the
nonlinear effects was introduced into the theory by assuming that the
pressure loss through the cascade increased sharply, although continu-
ously, at a particular angle of attack. The quasi-steady assumption would
certainly be valid for a disturbance wavelength equivalent to many blade
gaps; in one of the experiments, the wavelength was equal to 60 blade
gaps.

The inost striking difference between small amplitude propagating
disturbances and those found in compressors was that the flow through
a part, at least, of al. blade channels was irrotational at all times. The
"stalling" was confined to moderate periodic separation of the boundary
layers on the suction sides of the blades. Hence the blade channels ran
almost full instead of being blocked, as typical of compressors. To the
present authcpr, these findings seem important, although indirectly; be-
cause they show that small self-propagating disturbances can occur and
can be described in all important details by a consistent linearized theory,
they therefore indicate that the large amplitude stall, similar only in its
self-propagating property, cannot be represented by the linearized equa-
tions of motion. A few theories have been proposed with allowance for
large disturbance velocities, but so far none has progressed beyond a very
speculative stage.

Detailed measurement of the flow within stall cells is very diffi-
cult because of the extremely turbulent nature of the flow. The hot wire
anemometer can be used to determine instantaneous values of velocity,
but these values alone, without the corresponding directions, are of little
use. However, one serious effort to explore the flow patterns within the
stall cells in a multistage compressor has been made with anemometer
arrangements to measure direction as well as velocity 122] and some sig-
nificant facts have emerged. In the central part of a full-span stall cell,
there was a forward component of velocity of small magnitude. The
direction of flow between the blade rows was consistent with a small
axial component from back to front. Bordering the central portion of
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the stall cell and separating it from the unstalled flow outside were two
transition regions where the velocity fluctuations were more violent than
in the central portion. Because of the very irregular velocity fluctuations
it was not possible to find a net flow in any direction, if such a flow existed.
The circumferential extent of the transition regions corresponded to one
or two blade gaps. Similar measurements in the partial stall cells, which
extended over two or three blade gaps circumferentially, gave results
over the entire cell similar to those in the transition regions of the full
stall cells. Again, no interpretation in terms of net flow in any particular
direction could be made.

The stall cells, both partial and full span, extended axially through
the three stages of the compressor with no significant variation in cros-
sectional shape or size (the compressor had identical blading in all stages
and was run at low speed). There was no apparent spiraling of the stall
cells through the machine, i.e. the stalled regions behave like rigid axial
wakes rotating at a constant angular velocity. This behavior is surprising
if one examines the general flow pattern expected at different radii. Let
w be the angular velocity of the rotor, w. the angular velocity of the sta!l
cell, and the average angular velocity of a fluid element in the unstalled
flow at radius r. Taking a coordinate system moving with velocity wr,
the stall pattern is reduced to rest, and unrolling a cylindrical section at
radius r the general pattern can be represented schematically as in Fig.
F,5f. If the flow is two-dimensional, and the stalled region is of constant
width, the edges of the cell must be parallel to the direction of the veloc-
ity in the unstalled regions; otherwise one must accept the unlikely result
that the fluid within the stalled zone, with very large turbulent fluctu-
ations and low average velocity, can make a rapid transition to join the
unstalled smooth flow outside.

The average angular velocity of the fluid elements in the unstalled
flow varies with the radius in general, while c. is constant. For instance,
in the experiments described above, the compressor blades were designed
for vortex flow and hence 5 - 1/r2 . The observations show, however,
that the stall cell extends axially at all radii; that is, it behaves as if

-= w.. Evidently the propagating speed is close to the rotating speed of
the fluid elements outside the stall at approximately the average radius
of the stall cell. Radial flow on both sides of the cell produce the neces-
sary adjustments to satisfy the conditions that C w. at larger and
smaller radii.

Although one can estimate the rotating speed of a stall cell from the
mean whirl speed of fluid elements at essentially design flow rate and
the average radius of a stall cell, there are no reliable ways of predicting
the size, shape, and number of stall cells. The partial stalls that are the
first to appear upon reducing flow rate of the compressor below its design
value usually extend circumferentially over a length of two or three blade
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gape and radially about the same distance. With 30 blades, one, two,
three, and four cells may appear in succession as the flow rate is reduced.
With a much larger number of blades, the increments in number may not
be a single integer and the maximum number may be 10 or more. The
full span stall replaces the partial stalls very abruptly and increases in

3f

Rotor Stotor

(1) Stoll cell with 4) <i (,

(2) Stall cell with w > w

Fig. FSf. Stall cell in coordinate system moving with the stal.

cross-sectional area with further reduction of flow rate. The total area of
the stalled portion of the annulus, in both partial and full stall regimes,
can be estimated by assuming that the flow is at design in the unstalled
portion and that there is no flow through the stalled portion; however,
this rule is seldom exact. Upon increasing the flow rate through the com-
pressor from the stalled regime, the cell patterns repeat in reverse, but

the transitions occur at a higher flow rate than for decreasing flow. The

S357



F • THE AXIAL COMPRESSOR STAGE

difference is small for the partial stall transitions but is usually very
marked between the regimes of full and partial stall.

The compressor performance is of course strongly influenced by the
stall, the efficiency more than torque, but no methods for estimating the
effects of stall have been developed so far. To calculate the torque, it is
necessary to determine forces on the blades as they crow the stall cell
(see Fig. F,Mf), and clearly this will be difficult. The pressure rise and
efficiency in the stalled regime depend on the mixing losses and recovery
of the rotating sectors of unstalled flow behind the compressor and hence
will be strongly influenced by the geometry of the receiver; indeed, it is
scarcely possible to make a definitive measurement of over-all static or
total pressure rise in stalled operation.

The performance of axial compressors designed for high pressure ratio
is particularly sensitive to stall, since the first stages are stalled during
starting and part speed operation. At part speed the volume flow rate is
less than design in the first stages and greater than design in the last
stages, because the density ratio does not match the annulus areas. Al-
though the volume flow rate in the middle stages is close to the design
value, and these stages might be expected to have good performance, the
rotating stall cells developed in the first stages extend far back into the
compressor, frequently to the last stages, and degrade the performance
much more than would be expected from a combination of stages at their
appropriate volume flow rates. The deterioration of part speed perform-
ance becomes so severe as the design pressure ratio is increased that it be-
comes impractical to attempt construction of a single shaft compressor
for a pressure ratio of more than 8:1. For higher pressure ratios, it is neces-
sary to use two shafts that can operate over a range of speed ratio or to
incorporate stator blades that can be adjusted in angle during operation.

Perhaps more important than the influence of stall on performance
is the effect on blade stresses. The rotating stall cells produce periodic
forces on both rotor and stator blades that are at least as large in magni-
tude as the dynamic head of the flow velocities at the design flow angles.

The large magnitude of the periodic forces combined with the numbers of
possible stall cells makes it difficult to avoid blade resonance and fatigue
failure, even when the stalled condition occurs only for brief intervals of
time while the compressor is brought up to full speed. The possible dis-
turbing frequencies can be estimated at least approximately by the meth-
ods described above. It is particularly important to keep away from blade
resonance in the stall at the higher rotative speeds, where the aerodynamic
forces are large. As an added precaution, it is apparently standard practice
to measure stall frequencies on prototype machines and make adjustments
of blade frequency if necessary.

Surging is an oscillating disturbance characterized by average flow
rate varying with time through the compressor and is quite distinct from
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the rotating stall where the flow rate averaged over the annulus is con-
stant. The frequency of the surging oscillation is the natural frequency
of the gas contained in the compressor and the associated ducting or
reservoirs. The surging oscillations may occur with very large amplitudes;
hence the natural frequency is not necessarily identical with the frequency
for small amplitude sound waves. Since the surging oscillations are highly
dissipative, they can be maintained only if the compressor can supply
energy to the oscillation. The hysteresis effects mentioned previously, in
particular the transition between partial and full stall, are the most likely
mechanisms for introducing energy into the surging oscillation.

A typical pressure-flow characteristic curve is sketched in Fig. F,5g;
tracing the hysteresis loop in the direction shown by the arrows clearly

t I

Full -.tall

Fig. F,5g. Compressor operating line with hysteresis loop.

gives energy input into the system. The transitions from partial to full
stall, and vice versa, take place through unsteady flow processes which
require a time that is comparable with, although usually shorter than,
the period of the rotating stall cells. If the natural frequency of the sys-
tem external to the compressor is low compared with the transition time,
the hysteresis loop is traced out in a quasi-steady fashion and energy is
fed into the oscillation, until the amplitude reaches a value corresponding
to a balance of input and dissipative energies. The area of the hysteresis
loop is constant for quasi-steady oscillations corresponding to constant
energy input and the dissipation is proportional to the square oi the
amplitude of the oscillation, so that the oscillation reaches a very definite
amplitude.

In some configurations, the limiting amplitude is so great that the
net flow through the compressor is reversed in a portion of the cycle.
If the natural frequency of the system external to the compressor is high
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compared with the stall pattern transition time, the hysteresis loop col-
lapses to some intermediate operating line and there is not sufficient en-
ergy fed into the oscillation to maintain it; under such circumstances
surging does not occur. Hence, surging can be prevented if the natural
frequency of the reservoirs connected with the compressor can be made
sufficiently high by keeping the volumes small. The critical transition
time is inversely proportional to the rotative speed of the compressor;
whereas the natural frequency of the connected reservoir capacity will be
relatively insensitive to rotative speed. Hence a system may satisfy the
conditions for surge-free operation at part speed and be capable of surge
at higher rotative speed.

The rotating stall phenomenon has such important ramifications in
practice that questions concerning the advantages of eliminating it and
the possibility of elimination arise immediately. As far as performance
alone is concerned, it is not clear that a uniform stall, the alternative to
rotating stall, would have any advantage whatever. Certainly there would
be much gained by elimination of the stall as far as blade vibration and
surging are concerned. No practical method of preventing rotating stall
has been devised so far, and in fact the problems of doing so appear for-
midable. The introduction of some asymmetry in the annulus geometry
could stop the rotating cells, but the wavelengths of the stall patterns
are so large that asymmetries of sufficient magnitude to be effective
would certainly compromise design-point operation excessively. There is
evidence that the partial stalls that usually occur at the casing can be
shifted to the hub by moderate increase of solidity toward the rotor tips,
and this may have advantages if the stator blade supporting structure is
more rigid than that of the rotor. Aside from this limited means of control,
the designer has had to accept the rotating stall and learn to live with it.

Stationary asymmetric disturbances, for instance partial or complete
blocking of a sector of the compressor annulus at the inlet, are the forced
oscillation counterparts of the self-induced propagating stall disturbances.
If the velocity disturbances introduced into the inlet flow are small pertur-
bations, a linearized analysis [21] of the type developed for small disturb-
ance propagating stall can be expected to be valid. However, just as for
rotating stall, the velocity amplitudes that are of practical importance
are usually so large that the linearized theory is not valid. A few detailed
experimental investigations of partial blocking of a compressor annulus
have been made, see for instance [21], but the number of such studies is
still too small to justify statements as general as those possible for
rotating stall.

F,6. Other Problems. In the previous articles it has been assumed
that the effects of compressibility are slight. This assumption is reason-
ably correct 'ip to inlet Mach numbers of 0.7 or 0.8 (see Sec. E and (2]).
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For many compressor designs M = 0.7 or 0.8 is assumed to be the limit-
ing design Mach number, but for some high duty compressors tip Mach
numbers at the design point have been as high as 0.9. Below Mach num-
bers of 0.7 to 0.8, the characteristics of an axial compressor stage can
normally be represented by a single curve of pressure rise, efficiency, or
work done, plotted against the flow coefficient. As the Mach number in-
creases, the stage begins to show a loss of efficiency. The loss is generally
gradual because the incidence of the critical Mach number usually varies
with the radius on both rotor and stator blades. As the Mach number is
increased at air inlet angles below cos - I o/u, a choking condition is reached
so that the mass flow is limited. This effect is gradual over the radius but
eventually results in choking at all radii and limiting the flow that the
stage can pass.

In gas turbines for aircraft, there is a strong incentive to increase the
mass flow through a compressor, thereby increasing the Mach number
relative to the blades and decreasing the hub-to-tip ratio in the first stage.
The flow at which choking of the stage occurs depends on the average
characteristics of the blades, from hub to tip. On the other hand, the loss
of efficiency due to comprescibility depends on the weighted effect of
losses at different radii. In the free vortex stage, the highest Mach num-
bers occur at the tip of the rotor and the hub of the stator, as may be
seen from the typical velocity triangles shown in Fig. F,4a. To avoid the
incidence of such high Mach numbers, designers began in 1944 to depart
from free vortex designs and to adopt designs that tended to give con-
stant reaction at all radii. The use of inlet guide vanes was also influ-
enced by the need to reduce the Mach number. Counterrotation of the
flow by the guide vanes, which was originally intended to give increased
work, was found to increase Mach numbers relative to the rotor; this was
thought to be undesirable. Some compressors have been designed in which
the Mach number relative to the blades has been transonic. The perform-
ance of these compressors has been satisfactory. The theoretical basis for
their design has been somewhat elementary but, recently, McCune [23]
has given a theoretical analysis of the transonic compressor problem.
Apart from its effect at the inlet stages of a compressor, compressibility
also affects the performance of the outle& stages, particularly at speeds
well below the design speed. As will be shown later, the over-all perform-
ance of a multistage compressor is materially affected by the choking of
its last stages.

In compressors of small hub-to-tip ratio, the effects of radial flow may
be analyzed by the methods described in Sec. C and by methods depend-
ing on the actuator disk concept outlined in Art. 4 of this section. Even
if a stage is designed for negligible radial flows, such flows will develop
when operating off the design point. The effect becomes interesting near
the stall. Louis and Horlock (24] have shown that, in a conventionally
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designed free vortex stage, the blade section at the root may stall first.
The effect of the blockage at the stall is to force the flow radially out-
ward to the mean and tip sections. Across these sections, therefore, the
axial velocity may increase markedly owing to the radial flow, and the
pressure rise across them then falls, owing to the increase in axial veloc-
ity, although the sections do not stall. The section that stalls first is deter-
mined by the variation of design loading with radius and by the type of
vortex flow selected for the stage.

0.. ,Tip stolls

0.3 0.

0.2

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10.

Fig. F,6a. Pressure rimse at different radii for constant a,
stage comprising guide vanes and rotor (241

Ap average inlet axial velocity
ipU rotor speed at mean radius (U.)

Some experimental results for a rotor following a row of inlet guide
vanes are shown in Fig. F,6a (from [24). At the design point the absolute
outlet angle from the rotor was invariant with radius. With this design
the tip section actually stalls, but the pressure rises at the mean and hub
sections begin to droop at the flow coefficient at which the tip stalls, even
though it is well above their stalling flow coefficients. The effect of the
radial flow away from a stalled section provides one explanation for the
inaccuracy of calculations of stage characteristics based on the prediction
of the performance of the mean section. Generally the stage stalls sooner
than such calculations predict because of the earlier stall of either tip or
hub sections.

In Art. 5 of this section and in Sec. D, some of the phenomena associ-
ated with the complicated flow on the hub and casing boundary layers
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are described. These boundary layer flows reduce the effective area of the
annulus and alter the work and pressure rise in the stage. In the design
of a compressor it is customary to separate the flow into three regions:
the casing or tip boundary layer, the mainstream region, and the hub
boundary layer. Definition of the boundaries between the regions may be
difficult, particularly if there are high losses or large velocity gradients in
the mainstream region. In some schemes for design, blockage factors are
estimated so that the annulus area can be adjusted to allow for the bound-
ary layers. Values suggested for the blockage factors range between 0.98
and 1.0 for the early stages and 0.96 for the later stages in a compressor (2].
Corrections to allow for variations of work and losses in the boundary
layers are also necessary aud may amount to a few per cent. If a com-
pressor is designed with the assumption that the thickness of the wall
boundary layers is negligible, the most marked effect, when the com-
pressor is run, will be a reduction of work at the designed mass flow.
This reduction is due to the increased axial velocities in the mainstream,
caused by the presence of wall boundary layers. Howell 1I] evolved a
design method in which the wall boundary layer thickness was neglected
but* the loss of work was allowed for by an empirical work-done factor
which varies from unity to 0.85 from the first to the last stages in the
compressor. Associated with the use of the work-done factor were recom-
inendations for values of blade incidence and deflection to be used in the
design. Clearly the actual incidence will be less than the value used in the
design calculations. Various systems of design that allow for these effects
may contain a number of interdependent assumptions or estimations
which make comparison of the details difficult.

An increase in wall boundary layer thickness is often observed in
cascades without wall suction and in rotors and stators. This increase
causes an increase in axial velocity in the mainstream flow through the
cascade and, particularly for cascades of high stagger, the axial velocity
increase may be high enough to inhibit the development of the pressure
rise. This effect, often described as "wall stall," has led some designers to
suggest a limit to the pressure rise, which at high staggers is lower than
the limit set by truly two-dimensional stalling. De Haller 1251, for in-
stance, recommends that the designed outlet velocity should not be less
than 0.72 times the inlet velocity. Horlock [26, Fig. 3.16 compares some
of the suggested limits.

The prediction of the characteristics of a multistage compressor is
made difficult by the effects of interactions between the stages, the growth
of the hub and casing boundary layers, and the stalling of one or more
stages. A first, rough approximation may be obtained by estimating the
characteristics of each stage from the performance of the blade elements
at the mean radius. One such approximation has been suggested by
Mellor 1271 and Horlock [281. The method assumes that there is negli-
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gible variation in outlet angle with flow coefficient. Then Eq. 3-22 leads
to the result

2 0 (2-T
;j* 2 ; (2- j) (6-1)

where the asterisk denotes the values at the design point. The stage flow
coefficient is related to the density p and volume flow Q by

Qpi = AipiV,, = ApV, = ApoU (6-2)

where subscript I refers to the first stage.
Then

*U V, QP* (6-3)o,*U* V? Q* p

where pi = p* is assumed.
It is now assumed that the compressor consists of a large number of

similar stages of equal V* and of constant polytropic efficiency, so that

_ = (6-4)

where n = ( 1) (6-5)

Eq. 6-1 may then be written

(U*)2 dT 2 2 - *U* Q T* (6-6)' = -ffj "-T-* = TI,-'- - v ,* -Uf -p T( ] 6-6

If T/T* = 1 + e, where e is small this equation may be reduced to the
form

- A + Be (6-7)
dT*

where
2--- UQ + ()2 -1 (6-8)

and

B 2 - V UQ

4,* Jj*Q* (6-9)

The solution, in a form slightly different from that given by Horlock (96],
is

T, T2 + A [(Z*'B -, (6-10)
T - L\ T/ T-(

where T, = T* and subscript 2 refers to the compressor outlet conditions.
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Of the various deductions that can be mede from Eq. 6-10 perhaps
the most useful is that, when UQ = U*Q*, the temperature rise varies
as U2. This result is often used in calculations of the approximate off-
design performance of gas turbines (see XI,K).

A simplified analysis of the type given above is of very limited value
because the stage efficiancy of compressors varies appreciably with the
flow coefficient. Furthermore, stage characteristics derived from the flow
at the mean radius may lead to errors in the prediction of the stall, owing

-0
0 0

Moss flow

Fig. F,6b. Diagrammatic representation of the
characteristics of a typical axial compressor.

to the effect of the earlier stalling at hub or tip, which has already been
discussed. This disadvantage may be overcome by using the measured
characteristics of the stage, or similar stages, as suggested in the NACA
report [21, which describes the "stage-stacking" method of computing
compressor characteristics. The stage-stacking method suffers in turn
from the effects of neighboring stages which produce nonuniform flows
at inlet to the stage and which may induce radial flows at both inlet and
outlet from the stage, particularly when the rows of blades are closely
packed. The effect of these nonuniform entry conditions is to alter the
stage stalling point, an effect that is most marked when the previous
stage is stalled. It is also observed that a stage that stalls progressively
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when tested alone may exhibit an abrupt stall when operated in a multi-
stage compressor, particularly if it is one of the later stages.

Fig. F,6b shows diagrammatically the characteristics of a typical
multistage compressor obtained by the stage-stacking method. There is
a region of stall-free operation, the size of which decreases rapidly as the
design pressure ratio is increased. As the flow is increased at constant
rotational speed, the flow becomes limited by the choking of the last
stage. The flow through the compressor is also limited eventually by
choking of the first stage. The compressor will operate satisfactorily in
the cross-hatched regions of the diagram when one or more stages are
stalled. At high speeds, however, the stalling of the last or later stages
tends to be abrupt and may cause complete compressor stall. The dia-
gram in Fig. F,6b is simplified because it has been found (see 12]) that
multiple-valued performance curves are obtained if discontinuities in the
characteristics of stages near the front of the compressor are obtained
when the front stage stalls. The operating point of the compressor may
then depend on the manner in which it is approached. The kink in the
compressor surge line often obtained in high-pressure-ratio compressors
appears to be a result of the transition from operation with the front
stages stalled to operation with them unstalled. It has been found that
this kink tends to be less marked in compressors with stages of low
values of *.
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SECTION G

*THE SUPERSONIC COMPRESSOR

CHAPTER 1. EARLT WORK ON

SUPERSONIC COMPRESSORS

JOHN R. ERWIN

GI. Introduction. Two desired features of aircraft engines are that
the weight and frontal areas have the minimum value obtainable for a
given net thrust and fuel economy. For military applications, an engine
having a minimum number of acc'irately made parts is preferable if no
significant sacrifice in performance or reliability is involved. Centrifugal
compressors fulfill the requirements of light weight and minimum num-
ber of parts; however, the relatively small flow capacity for a given frontal
area and the comparatively low efficiency presently obtainable in high
compression ratio stages are negative features that subtract seriously
from the advantages. The advantages of the axial flow compressor are
the high flow capacity for given diameter and the relatively high effi-
ciency. The major disadvantage of present axial compressors is the low
pressure ratio produced by a single stage and the resultant requirement
of many stages and many blades to obtain the over-all pressure ratio
necessary. The mixed flow compressor is a compromise between the cen-
trifugal and the axial flow compressors. The future use of the mixed flow
compressor in aircraft gas turbines will probably be confined to smaller
engines either as a primary unit or as a second compression stage. As yet,
however, the aerodynamic design requirements for efficient, high flow,
high pressure ratio, mixed flow compressors have not been determined to
an extent permitting wide application. A need exists for a compact, high
flow, efficient, high pressure ratio compressor.

The pressure ratios obtainable from one stage and, to a lesser extent,
the flow capacity of presently used compressors has been limited by the
apparent necessity of avoiding supersonic velocities relative to the blad-
ing. There is ample evidence that with conventional compressors, axial or
radial, the efficiency decreases rapidly as the Mach number relative to the
blades or vanes exceeds unity. The increased losses are believed to be due
largely to the presence of shock waves originating near each blade and
the flow separation attending the intersection of the shock waves with
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the blade surface. The total pressure loss suffered by the flow in passing
through a single normal shock at a Mach number below about 1.4 is
entirely acceptable. However, the losses due to separation, particularly if
subsonic diffusion is attempted downstream of the shock, result in a severe
increase in entropy. The problem of using supersonic velocities relative to
compressor blade rows can be resolved by the reduction or elimination of
strong compression waves and the separation of the flow from the aero-
dynamic surfaces.

For supersonic velocities relative to the blades, sharp-edged profiles
are probably necessary to eliminate strong upstream waves. In the
Busemann biplane [1], extended wave patterns are prevented by pro-
ducing waves from the internal surfaces only (Fig. Gla). Kantrowitz,
in applying this principle to the design of the forward portion of the

V N.

X/ p

Fig. G,la. Busemann biplane. Full lines: compression
waves. Broken lines: expression waves.

blade passages (hereafter called the entrance region) of supersonic com-
pressor blades, was able to prevent the occurrence of extended wave sys-
tems upstream of supersonic compressor blade rows [2]. High pressure
recovery and efficiency can be obtained with supersonic diffusers [,4].
Thus no fundamental reason for supersonic compressors to be inefficient
was apparent. The high pressure ratios potentially available in a single
stage and the high flow capabilities of supersonic compressors have stimu-
lated interest in their development.

The first active consideration of supersonic compressors appears to
have taken place in Germany during 1935. Weise of the D.V.L., Berlin,
and Encke and Betz of the A.V.A., Gottingen, realized the potentialities
of employing supersonic flows in axial compressors about the same time.
Encke's compressor was the first built but it was destroyed during early
testing. No report was issued describing this machine, but Davidson [5]
notes that the blading was of triangular section. The sections were located
so that the shock wave from the leading edge of one blade intersected the
adjacent blade at the vertex of the triangle. It was intended that the flow
would become subsonic near the minimum section thus formed and diffuse
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in the expanding passage downstream of the throat. Insufficient data were
recorded to determine whether these flow conditions could be achieved
before the compressor was destroyed.

Weise proposed several types of axial flow supersonic compressors [61.
The first type tested employed guide vanes to prewhirl the flow entering
the rotor in the direction of rotation. The flow entered the rotor at sub-
sonic velocity and was turned about 90° without a net change in static
pressure at the mean diameter (Fig. G,lb). Due to the large addition of

U - 1.174o*

Tip operation
Positive reaction

in rotor

U= 1.056 a* i~i~ ~
W, V2  W j ~ j

Mean operation
Boundary layer

Impulse rotor suction slot

Normal shock

U = 0.938 a*

W, Hub operation
W VNegative reaction

in rotor

Fig. G,lb. Weise Type I compressor details. a* is sonic velocity before intake.

tangential velocity imparted by the impulse rotor, the Mach number of
the flow into the stators was over 1.5. Weise's intention was to maintain
a normal shock at the stator entrance. Slots were provided in each pas-
sage to remove the casing boundary layers and to prevent flow separation.
The stator sections were straight. Expansion of the passage area was ob-
tained by divergence of the outer casing (Fig. G, I c).

Unfortunately, this compressor yielded poor performance in tests. At
design speed, the maximum pressure ratio obtained was less than 1.4
compared to the design value of about 2. The adiabatic efficiency was
very low (Fig. G, ld). These results were believed to be due to separation
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of the flow from the inner casing downstream of the rotor. To study this
problem further, the stator blades were removed and were replaced by a
cylindrical passage. Surveys of the flow at several stations downstream
from the rotor showed that the flow separated from the case under these

4

Fig. G,lc. Section through the D.V.L. test rig.

1.4

o 1.3 . -%

13 .2- 01'8

blo

00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Nondimensional mass flow
Fig. G,Id. Weise Type I compressor performance.

conditions also. No reasonable explanation for the observed behavior of
the flow was discovered.

Weise considered a different stator design for this compressor (Fig.
G,je). In this configuration, all of the compression was to occur in a
normal shock at the stator entrance. The stator blades were not intended
to diffuse the flow but merely to return the flow direction to that leaving
the guide vanes. To maintain constant pressure through the stators and
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to reduce the tendency of the flow to separate from the inner casing, this
surface was to curve outward in the region of the blades. This modifica-
tion was not built, however.

The second supersonic compressor built by Weise was quite different
in principle from the first. In the second compressor, the rotor was in-
tended to produce a high static pressure rise with little turning of the flow.

W2
Vi

Fig. G,le. Weise Type Ia compressor details. a* is sonic velocity before intake.

Conditions immediately behind shock

Supposed shock

Fig. G,lf. Weise Type II compressor details. a* is sonic velocity before intake.

Although the same inlet guide vanes were used and the rotational speed
was slightly lower, supersonic velocities into the rotor were obtained by
designing the rotor to turn in the opposite direction from the first com-
pressor. The flow was to enter the rotor with a Mach number of about
1.55, undergo a normal shock near the leading edge of each blade, and
exit with subsonic velocity. The blading was similar to typical subsonic
compressor blading bu , had sharp leading edges and higher chord-spacing
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ratio. The passage between blades was designed so that the minimum
area occurred at the entrance. The drawing (Fig. G,lf) neglects the wave
pattern that must exist upstream of the rotor with the curved sections
shown. This compressor was destroyed during the first high speed test

W 2/0= 1.50

Fig. G,lg. Supersonic compressor blades without shock waves. The
Prandtl-Meyer compression waves are cancelled within the passage.

70.

---l 4.-- Straightening vanes

Guide Blades
vanes

Fig. G,th. Supersonic compressor patented by Redding.

run before design conditions could be established. As the machine was
not rebuilt, no information as to the performance of this compressor is
available.

A third type of supersonic compressor considered by Weise is illus-
trated in Fig. GIg. The inlet velocity is presumed to be axial and super-
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sonic so that compression waves from the leading edge region propagate

downstream. This type of compressor can produce only limited pressure
ratios but may have application because of a unique feature: a supersonic
axial velocity can be converted to a subsonic axial velocity while the flow

rpm=11,500

M= 1.58

11,000
I 1.48

L 8 - -- 10.500 A

1.42

10,000
1.38

4-\
0

I 9000
1.23

700

0.97

S 1.4 . . - . ... . . . ..

1,2-

5000

Jo ___ __

0 0.08 0.16 0.24 0.32 0.40 0,48
Mass flow coefficient

Fig. G, i. Variation of pressure ratio with mass flow coefficient and compressor
Mach number. These data were obtained from surveys behind the rotor and therefore
do not include any stator losses.

in the rotor remains supersonic. By suitable design of the blading, such a
rotor could be either self-driven, power-producing, or power-absorbing [7].

In the United States, investigation of supersonic compressors was
begun independently by Redding [81 at the Westinghouse Electric Com-
pany and by Kantrowitz at the NACA Langley Laboratory in 1941.

( 374 )



G,I • INTRODUCTION f
Both studies proceeded along remarkably similar lines, the studies con-
sisting first of theoretical considerations of possible vector diagrams and
selection of similar designs; secondly, of experimental investigations of
small circular supersonic diffusers [9] and then tests of rotors designed for
similar performance (Fig. G,Ih and Plates G, la and G,lb). Early tests in
both laboratories were discouraging; at Westinghouse, supersonic com-
pressor investigations were discontinued for the time in favor of the
immediately applicable, subsonic axial flow compressor.

The performance of the rotor tested at Langley [10 is shown in Fig.
G,li and G,lj. The characteristic behavior of supersonic compressors in
operating at constant flow over wide ranges of pressure ratios at higheroo00
U rpm = 5000 7000 9000 io.000 10,500
" M= 070 0.97 13 1.38

.1,000 !1,500
1.48 1.58

0.7 - -- 
-C2060 ... ...... ....0.50 O - 1- F _

1.00 1.20 1.40 1.60 1.80 2.00

Pressure ratio
Fig. G,1j. Efficiency variation with pressure ratio and compressor Mach number.
Data are from surveys in Freon-12 behind the rotor and do not include stator losses.

speeds is evident. The pressure ratio obtained at the design rotational
speed (10,500 rpm in Freon-12) was 1.8 and the maximum rotor efficiency
was about 81 per cent, considerably less than the design pressure ratio 2.9
and the assumed rotor efficiency of 90 per cent. A rather surprising result
obtained was that the peak efficiency occurred in the transonic speed
range. This result led to an interest in compressors operating in the
transonic speed range. Although a number of supersonic compressors of
the reaction type have been constructed, no major improvements in
pressure ratio or efficiency have been obtained.

Most of the difficulties of the reaction-type supersonic compressor
are believed to be associated with the outward flow of the blade and
hub surface boundary layers and particularly of fluid from regions of
separation toward the rotor blade tip. Thus the tip section, which ordi-
narily must produce the highest static pressure rise, is required to do so
in the presence of an accumulation of low energy flow. It would seem
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reasonable that, by transferring the difficult task of producing the high
static pressure rise to the stator, the rotor performance would be im-
proved considerably and, further, higher work inputs would become
possible. Transferring the static pressure recovery from the rotor to the
stator makes possible the use of variable geometry, boundary layer con-
trol, higher solidities or multiple blade rows which would hardly be
practical with a rotor. Weise's first compressor had a subsonic impulse
rotor but the performance was poor. Investigation of impulse compressors
began in 1945 at Langley Field and efficient rotor performance was ob-
tained in low speed tests [11,1SJ. The supersonic impulse rotor shown in
Plate G,lc was designed at Langley Field in 1948.

G,2. Isentropic Flow through Blade Rows. For visualizing possi-
ble two-dimensional isentropic flows through blade rows, the Mach vector
diagram [7] is useful. On this diagram (Fig. G,2a), lines of constant Mach
number are plotted as circles about the origin 0. Lines of constant flow
direction measured from the axis of rotation of the blade row are shown
radiating from the origin. For any given cascade (one frame of reference),
contours of constant mass flow or through-flow coefficient, A = A*/A
(where A* is the area of the flow at M - I and A is the annulus area of
the blade row), can then be drawn. The constant X contours illustrate

II II
t.,o -20 oo 0 O0
. . . . . . .46 a 0 N 90.

-800 80*

-700 70*

-600 0

-50 ° * ' 500

-40' 400

-30' -200 -10 °  0°  100 20' 30o

Fig. G,2a. Mach vector diagram.

( 376 )



G,2 ISENTROPIC FLOW THROUGH BLADE ROWS
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Fig. G,2b. Reduced velocity vector diagram.

possible flows through blade rows of constant annulus area. For example,
consider a cascade having flow entering at a Mach number of 1.6 in a
direction 600 from the axis of rotation. For this condition, X = 0.4. If
the flow is diffused and discharged in the same direction, the discharge
Mach number for isentropic compression would be about 0.57. In a real
flow, the growth of the boundary layers and the total pressure losses due
to finite shocks restrict the flow, so that the value of X and the Mach
number of the main stream leaving the blade row are higher. The value
of X will also change if the physical flow area is changed. Within the
cascade, the finite thickness of the blades increases the value of the flow
coefficient.

The maximum tangential velocity that a given flow can attain is of
interest to compressor and turbine designers. In [7], the maximum tan-
gential velocity is shown to occur when the Mach number of the axial
component of the flow is unity.

Another method of presenting possible flows in compressor or turbine
blade rows is the "reduced velocity" vector diagram. This diagram (Fig.
G,2b) is constructed in a manner similar to the Mach vector representa-
tion, except that values of constant M* = V/a* (where a* is the velocity
of sound at M = 1) instead of M = V/a are plotted as circles about the
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origin. Contours of the constant mass flow coefficient ) can be super-
imposed on this diagram to illustrate the possible conditions a given flow
can obtain.

There are several advantages in using M* to examine flows through
cascades. The entire field from M - 0 to M - c can be represented
since M* has a finite value of [(y + 1)/(,y - 1)]i equal to 2.45 for air.
Further, for a given blade row, the rotational speed appears as a vector
of the same length whether referred to the inlet conditions or to the exit
conditions. On this plot, therefore, a velocity vector diagram of the flow
entering and leaving a rotating blade row can be used to estimate the
conditions in stationary coordinates directly.

G,3. High-Turning Blade Sections. Two-dimensional blade sec-
tions for high-turning supersonic compressors can be constructed graphi-

Fig. G,3a. Characteristic line network for supersonic
vortex flow according to Busemann. y - 1.40.
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vortex flow according to Busemann. -y - 1.40.
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Concave - I
transition arc

transition, /

aig. G,3h. Construction of transition arcs.

cally by the method of characteristics. Sections so designed for different
conditions do not necessarily bear any physical relationship to each other.
If the passages between blades are designed so that supersonic vortex

flow exists [9], a number of advantages accrue: (1) sections designed for
different conditions are related so that the properties of a series can be
determined by a minimum of theoretical or experimental effort; (2) the
desired turning of the flow can be achieved with a minimum of blade
surface area if maximum and minimum surface Mach numbers are speci-

fied; (3) the major portions of the curved surfaces are either straight lines
or circular arcs so that machining is simplified and fair blade surfaces are
more easily obtained and checked; and (4) the graphical construction of
the sections is quick and simple.

The classical compressible vortex flow in which the streamlines are

concentric circles and in which the velocity is inversely proportional to
the radius has been shown by Busemann in an unpublished paper to yield
an analytic solution for the Mach lines in the supersonic portion. If the

solution is solved in terms of a nondimensional velocity ratio it can then
be tabulated or diagrammed for general use without the necessity of re-

calculating for each specific case.
The general vortex equation VR = const, where V is velocity and

R is radius, can be rewritten M*R* = 1.0 with M* = V/a* and R* =
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R/r*. Here a* is the sonic velocity at unit Mach number and r* is the
radius of the sonic velocity streamline in the vortex field. Then

fi+ I - 1sin- -Y I + sin- [(,y + 1IR*' - "Y]

+ const

where 0 is the angular position of the radius vector. Figure G,3a shows the
characteristic network for supersonic vortex flow according to Busemann
for -y = 1.40. Using this diagram, the Mach wave pattern in the vortex
flow region of any high-turning passage can be traced.

Axis of
symmetryRotor Rotor

leading trailing
c.ee edge

"T -

!+ 4
ks,

Relative

inlet flow

Fig. G,3c. Construction of typical symmetrical blade section. From c5.

The uniform relative inflow into a blade is converted to a vortex flow

by means of transition arcs on the convex and concave surfaces which
can be simply constructed by means of nonintersecting characteristic lines
(Fig. G,3b). At the exit the process is reversed. The graphical design of a
blade passage for given inlet, outlet, and surface Mach number conditions
can be readily accomplished. The surface velocities of the passage deter-
mine the radius of one circular arc with respect to the other. The concave
transition arc must generate compression waves to reduce the inlet veloc-

ity to that prescribed for the concave circular surface while, at the convex
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surface, expansion waves are generated. The transition sections must be
so shaped that the Mach waves fair into the vortex wave pattern, only
the leading and trailing portions of which need to be drawn. At the exit,
the transition arc surfaces are created by shaping the contour so as to
cancel the incident waves and return the flow to uniform parallel flow.
To form a closed profile the fore and aft transition arcs on the suction
surface are continued in a straight line parallel to the flow direction to
the leading and trailing edges of the blade (Fig. G,3c). A schlieren photo-
graph of flow through blade sections designed by this method is presented

in Plate G,3. Disturbances visible in the photograph appear to follow a
Mach line (dotted) of the characteristic network very closely.

G,4. Summary. Considerable interest has been shown in supersonic
compressors for more than two decades. Although the test results of these
compressors have generally been discouraging, research on this type of
machine has been continued because of the design simplicity and reduced
weight which appear to be available once the difficult problems are solved.

At the present time, the design of supersonic compressors is based
largely on experience with supersonic diffusers, stationary cascades of
blades, and previous supersonic compressors. Two-dimensional blade sec-
tions can be designed readily, using graphical characteristic methods. The
diffusion rates that can be obtained efficiently with supersonic flow or
with subsonic flows following normal shocks in the presence of strong
radial pressure gradients due to centrifugal effects are not well estab-
lished. Studies of laminar and turbulent boundary layers in the vicinity
of a strong oblique shock intersecting and reflecting from the surface have
aided the visualization of the problems. A satisfactory theoretical treat-
ment of the three-dimensional flow, including the boundary layers,
through supersonic compressor blading appears to await more thorough
experimental results with cascades and compressors of various types.

CHAPTER 2. AERODYNAMIC PROPERTIES OF

SUPERSONIC COMPRESSORS

ANTONIO FERRI

G,5. Introduction. A compressor is usually defined as a "supersonic"
compressor when the flow enters the rotor at a velocity which is every-
where supersonic with respect to a coordinate system rotating with the
rotor. When the velocity of the flow relative to the rotor, at the entrance
of the rotor, is only partly supersonic, and thus in some region of the flow
is subsonic, then the compressor is called a "transonic" compressor.
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According to this definition only the velocity relative to the rotor must
be supersonic; the absolute velocity of the flow can be supersonic or sub-
sonic. Supersonic compressors have operating characteristics which de-
pend on the value of the axial component of the velocity of the flow
approaching the rotor(component normal to the plane parallel to the
disk of the rotor). Therefore, in the following articles these subdivisions
are introduced: supersonic compressors operating with subsonic axial

Subsonic flow

Supersonic flow Shoc
/Shock

" II
ail 0

V= v, = 600 ft/sec Stotor

Subsonic
flow

Fig. G,5a. Velocity diagram for shock in rotor compressor.

velocity and supersonic compressors operating with supersonic axial
velocity at the entrance of the rotor.

Other subdivisions are often introduced depending on the value of
the velocity leaving the rotor. If the velocity leaving the rotor in a rela-
tive coordinate system is subsonic, then transition from supersonic to
subsonic flow must occur in the rotor. In this case the rotor is usually
called shock in the rotor compressor, because it is assumed that the
transition from supersonic to subsonic flow will occur in the rotor pas-
sages through a shock. When the exit velocity in relative and in absolute
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motion is supersonic, the transition from supersonic flow to subsonic flow
must occur in the stator; then the compressor is called shock in the stator
compressor. The possibility exists that the flow leaving the rotor of a
supersonic compressor is subsonic in relative motion but supersonic in
absolute motion; then transition from supersonic to subsonic flow occurs
both in the rotor and in the stator. It is possible also that the velocity
at the exit of the rotor in relative coordinates may be supersonic while
the absolute value of the velocity is subsonic. Then the transition could
occur without a strong shock in the rotor or in the stator. Typical veloc-

ity diagrams for compressors with shock in the rotor, shock in the stator,
shock in the rotor and shock in the stator, and with no transition are

.b0  
i 5 eC 

1 -00 13 0 f t / sec q.
Supersonic V M 1  1.48

flow'-" Sn .'. I I,
Rotor ./60" !"sec

Supersonic bsonicflow flow0

900 ft/sec

diagram shock in stator compressor.

given in Fig. GSa, G,5b, G,5c, and G,5d respectively. The symbols in
these figures are defined as follows:

V -- the velocity of the flow in a stationary coordinate system

V. = the axial component of the flow velocity
U = the rotational velocity of the rotor
W = the velocity of the flow relative to the rotor

The subscript 1 indicates properties at the entrance of the rotor. The sub-
script 2 indicates properties of the flow at the exit of the rotor. In the
passage of Fig. G,5d a contraction in the annulus is assumed along the
passage. The contraction decreases the relative velocity from 1400 f I/sec
to 1250 ft/sec.

In the following articles the flow fields at the entrance and at the exit
of the rotor passage are analyzed for different types of supersonic com-
pressors, by assuming first that three-dimensional effects are small and
can be neglected. In Art. 3 some of the important three-dimensional
effects are qualitatively discussed, while Art. 4 briefly outlines possible
performances of the different types of supersonic compressors.
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Fig. G,5d. Velocity diagram for shockless compressor.

G,6. Flow Field at the Entrance of a Supersonic Cascade with
Subsonic Axial Velocity.

Blades of zero thicknes8 and zero camber. Consider a rotor having
blades of zero thickness and without camber, and assume that the radial
effects are small so that the velocity component in the radial direction
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can be neglected. The flow field in such a rotor can be analyzed by repre-
senting the rotor as a two-dimensional cascade having an infinite number
of blades with zero thickness and no camber, and having the same spac-
ing as the rotor blades at the radial station at the middle of the blade.

e I
e \ E'

\ C

\ i

Vol

0--x

E

V., P Tr

Fig. G,6a. Se, mi-infinite supersonic cascade.

Assume that the axial velocity V,, of the flow entering the rotor is sub-
sonic, while the absolute velocity V and the rotational velocity U of the
rotor are such that the velocity relative to the blade W, is supersonic.

In order to analyze the flow in such a cascade let us consider at first
a cascade of semi-infinite type, as shown in Fig. G,6a, where the blade at
E is the first blade of the cascade and an infinite number of blades follow
the blade in the direction of the rotation of the rotor. The cascade is
placed in a supersonic flow field of velocity V1. The inclination of the
entrance plane of the cascade EE' to the undisturbed velocity V, is such
that the velocity component V., normal to the plane EE' is equal to the
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axial velocity of the flow entering the rotor, while the tangential com-
ponent Vo, parallel to the plane EE' is equal to the rotational velocity
of the rotor plus the tangential component of the absolute velocity of the

flow entering the rotor.
When the axial component V, of the velocity, relative to the blade,

is subsonic, waves produced at the leading edge of the blades are less
inclined with respect to the entering velocity than the entrance of the

cascade EE', because the velocity component normal to the wave must

at least be sonic. Therefore, these waves move ahead of the cascade and
change the conditions of the entering stream.

Consider at first the flow field in the region of the entrance of the
cascade and assume that the as-yet-unspecified flow conditions down-
stream of the cascade are such that supersonic flow can be established in
the passages between the blades of the cascade. Then the entering volume
flow is determined only by the conditions at the entrance of the cascade.

When the subsonic axial velocity component V,, and the tangential
velocity component V., are such that the velocity V, relative to the cas-
cade is parallel to the blades (vector OA of Fig. G,6a), no waves are
produced at the entrance of the cascade and therefore no waves are
transmitted upstream in the flow. If the tangential velocity V., increases
with respect to this value while V., remains constant, the new direction
of the velocity OA' relative to the cascade becomes inclined with respect
to the blade direction, and expansion waves e, e' are produced at the lead-
ing edge of the first blade at E (Fig. G,6a). Because of the subsonic value
of the axial component, the expansion waves produced at the first blade
accelerate the flow in front of the other passages, and because behind the
last waves e' the flow again becomes parallel to the blades, no other waves
are produced at the leading edge of all the other blades following blade a.

The equilibrium conditions behind the waves e, e' correspond to a
value of the entering relative velocity having a direction parallel to the
blade or in the direction of OA; therefore the expansion waves produce
an increase of velocity from OA' to OB. The point B, from two-dimen-
sional supersonic flow considerations, is on the epicycloid A'B, corre-
sponding to the velocity OA'. The waves, moving upstream in the flow,
change the value of the axial velocity from OP to OR and the value of
the tangential velocity from PA to RB.

Consider now a supersonic rotor obtained by wrapping the cascade of
Fig. G,6a around a cylinder. If the velocity relative to the rotor is in tile
direction of the vector OA, the flow conditions at the entrance of the rotor
are such that no waves are produced at the entrance of the rotor. Now if
the direction of the velocity V, relative to th~e rotor changes abruptly
because, for example, the rotational velocity U changes from the value
PA to the value PA' (Fig. G,6b), then waves similar to the waves ee' of
Fig. G,6a are generated simultaneously at the leading edges of all blades.

( 386 )



Plate G, I. Supersonic compressor

rotor developed by A. R. Kantrowitz.

lPlate (G,1b. Supersonic compressor developed by Kantrowitz.



Plate G,lc. Impulse supermnic compressor rotor.

Plate G,3. Schlieren photograph of the flow in a blade

passage designed for supersonic vortex flow.



Plate H,3. Exploded view of two-stage turbine element from Westinghouse
J34 turbojet. Gas flows through turbine from right to left.
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Plate 1,13a. Gas turbine motor with centripetal
turbine. (The Garrett Corporation.)



Plate 1,13b. Three radial turbine wheels used in
turbochargers of comparable characteristics.
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Plate K,3. Unsteady density field around a fluttering

profile. 11 = 0.6; v i 11 cycles/see.



G,6 - ENTRANCE WITH SUBSONIC AXIAL VELOCITY V
The production of such waves occurs through a nonsteady process and
at a time ti, slightly after the time of the change of the velocity U the
family of waves produced by each blade travel only at a small distance
in front of the blade. The qualitative form of the wave pattern is shown in
Fig. G,6b. Each family of waves moves upstream of the blade and inter-
feres with the family of waves produced by the other blades. The wave

I'

l,J

Mach angle 1  Wave pattern at t t

V'si Wave pattern at t = t > t,

Wave pattern at t = t3 > t2

P R
V1 = V,,

Fig. G,6b. Wave pattern in front of supersonic rotor.

resulting from the interference of all the families of waves moves up-
stream of the compressor in a direction normal to the axis of the com-
pressor and, therefore, changes only the axial velocity [1].

Waves are produced at the leading edge of each blade unless the
direction of the velocity relative to the blade is tangent to the blade;
therefore, the steady conditions in front of the compressor when the non-
stationary waves have moved far away in front of the rotor corresponds
to the velocity diagram ORB, where OR is the new axial velocity corre-
sponding to the new rotational velocity BR and the vector OB is tangent
to the blade. The increase in axial velocity corresponds to PR.
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If the tangential velocity U decreases with respect to the original
value, compression waves (shock waves) are produced at the leading edge
of every blade of the rotor. Each compression wave moves upstream and
interferes with the compression waves produced by the other blades. The
nonsteady wave pattern is again similar to the wave pattern shown in
Fig. G,6b. The compression wave resulting from the interference of all
the compression waves produced by each blade moves upstream and de-
creases the value of the axial velocity.

The equilibrium condition in the absence of waves moving upstream
from the rotor for a given value of the tangential component U again
corresponds to a value of the axial velocity V,, such that the velocity W,
entering the rotor is parallel to the direction of the entrance of the blade.
Therefore, in an axial supersonic compressor or turbine having blades as
those considered in Fig. G,6b and with a known blade angle, the value
of the axial flow component at the rotor entrance and the direction of
the entering flow can be determined directly from the value of tYfe rota-
tional component.

It is important to keep in mind that such indications have been ob-
tained by assuming two-dimensional flow in front of the compressor and
straight blades without thickness; in the following discussion it is shown
that both parameters can affect the results of such an analysis.

Blades hat,ing finite thick. ess and camber. Consider now a semi-
infinite cascade having blades with finite but small thicknems, such that
an attached shock is possible at the leading edge of the blade for the
existing Mach number and direction of the incoming flow. If the design
of the entrance of the passage between two blades is such that no curva-
ture exists at the trailing surface AB of the passage in the region of the
entrance (Fig. G,6c), then the flow field at the entrance is similar to that
for blades of zero thickness and the considerations presented in the pre-
ceding discussion still apply. In this case the thickness can be considered
to be obtained by deflecting the leading surface of the blade from AB to
AC. A shock wave AD is produced which is contained inside the passage
and does not affect the flow in front of the cascade.

Consider now a blade shape as shown in Fig. G,6d with curved upper
surface in the region of the leading edge of the blade. The velocity rela-
tive to the blade at the leading edge is supersonic and is tangent to the
blade at the leading edge A; therefore the flow along the trailing surface
AC of the blade undergoes a deviation which produces waves. Some of
the waves produced at the trailing surface near the leading edge move
upstream because of the subsonic character of the axial component of the
stream and change the flow field in front of the other passages of the cas-
cade, while other waves are confined inside the passage. The waves gener-
ated downstream of the point B of the blade a, defined as the point which
produces the wave meeting the leading edge of the next blade b, do not
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affect the flow entering the other passages, while the waves produced
along AB move upstream of all the passages. The region AB can be de-
fined as the entrance region of the blade.

Consider at first a semi-infinite cascade as shown in Fig. G,6d, where
the curvature of the trailing surface of the blades is such that expansion
waves are produced along the entrance region AB. The expansion waves
produced by the curvature along the surface AB expand and turn the

B

C

A

Ve,

Fig. G,6c. Supersonic cascade having no curvature at entrance.

flow in front of the blade b, so that the flow in front of the blade b is
expanded and turned from the free stream direction OA to a direction
OB parallel to the tangent at B to the blade a. The blade b is geometri-
cally identical to blade a and the tangent to A' is parallel to the tangent
at A; therefore a shock wave is produced at A' followed by expansion
waves. If the deviation from A to B is small, the flow field can be analyzed
by neglecting waves reflected from the shock, because the intensity of the
shock is small and entropy gradients are not important.

The shock at A' produces a deviation equal to the angle between the
tangent at B and to the tangent at A, and interferes with some of the
waves produced along AB and with some of the waves produced along
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Fig. G,6d. Supersonic cascade having curved entrance.

A'B'. The strength of the interacting waves in front of the shock plus the
strength of the interacting waves behind the shock must be such that the
shock wave disappears at infinity; therefore, the deviation of expansion
across the two groups of waves must be equal and opposite in sign to the
deviation across the shock at A' and hence equal to the deviation from
A to B. Call D the point on blade a where the first wave that interacts
with the shock produced at A' is generated and D' the point on blade b
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where the last expansion wave behind the shock that interacts with the
shock from A'. Point D' is at the same position on blade b that point D is
on blade a, because the expansion from A to D must be equal to the
expansion from A' to D'. If the blade c is considered, all the waves pro-
duced between A' and D' on blade b and A" and D" on blade c interfere
with the shock produced at A", and hence the flow on all the blades of
the cascade is similar to the flow on b.

The waves from A to D move in front of the cascade and change the
free stream velocity from a direction parallel to A to the direction parallel
to D. These waves are the only waves that reach infinity and that are not
canceled out by the following shocks. Therefore the flow direction and
intensity behind these waves corresponds to the undisturbed flow for an
infinite cascade having the same geometry.

The position of the point D which determines the direction of the
undisturbed flow depends on the free stream Mach number and on the
geometry of the entranee region. These in turn determine the mechanism
of interaction between expansion and shock waves (see [131).

For any entrance blade design to a given position of the point B along
the trailing surface of the blade, there corresponds a given value of the
Mach number at B defined by the condition that the Mach wave from B
must pass through the leading edge A'. From the position of B and the
Mach number at B the wave pattern along AB can be designed; similarly
for the wave pattern along A'B'. The sho)ck wave shape from A' and the
points D and D' which produce the waves corresponding to free stream
direction can be obtained. Then the velocity diagram for the cascade
corresponding to steady conditions or to no waves moving to infinity
can be determined. This condition is obtained by taking the direction of
the relative V!_city W'1 tangent to the blade at D. The direction and
intensity of the free stream velocity vector W' for the case of an infinite
cascade corresponding to any given point B which bounds the entrance
region can also be determined from the pressure distribution at the en-
trance region of the blade.

Consider the cascade of Fig. G,6e. The entrance region AB corre-
sponding to the chosen point B on the blades produces waves that move
in front of the cascade, while the wave from B by definition meets the
leading edge of the following blade. Construct now a new cascade having
the entrance region of the blades EACBD where the line BD is a straight
line tangent to the original blade at B, the line EA is parallel to BD,
E'D is parallel and equal in length to the Mach line A'B, and ED is
identical to AB. The entrance region ABC is equivalent to the entrance
region EACBD, because the pressure distribution in EA or E'A' is equal
to the pressure distribution on DB or D'B'; therefore the flow properties
between E'D and A'B are constant and the pressure along ED is equal
to the pressure distribution along AB, while the pressure along AC is
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unaffected. Then the flow in the cascade can be considered in two parts,
one corresponding to the region of the blade EA D in front of the line A A',
and the second corresponding to the region behind the line A A', which
does not affect the entering conditions because no waves are produced
along DB.

Assume that the flow at infinity of the cascade is uniform and neglect
waves reflected at the shock or by the entropy gradients; these waves
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Fig. G,6e. Construction of equivalent cascade entrance.

produce only second order effects. Then the position of point B deter-
mines the inclination of the Mach wave A B and therefore the Mach
number at B. The pressure distribution along the surface ED can be
obtained from the shape of the blade and the pressure on EA is the
same as the pressure at B; therefore the force acting on the blade EA D
can be determined. In an infinite cascade the number of the passages is
equal to the number of the blades, so that the force produced by each
blade EA D acts on the mass flow of one passage, which is known because
the flow along A'B is known. This force changes the direction of the flow
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from the free stream direction at infinity to the direction A'B, and there-
fore the direction and intensity of the velocity of the flow at infinity can be
obtained from continuity and conservation of impulse equations.

In all these considerations, both compression and expansion waves
have been considered isentropic. However, extended in the flow in front
of the cascade the shock waves produce an increase of entropy and vor-
ticity in the flow, and therefore produce reflected waves. This variation
affects the position of point B along the blade surface; in the usual case,
however, the difference is small. The increase in entropy is produced by
the compression waves at the expense of the power transmitted by the
compressor to the flow. It affects the efficiency of the compressor, and at
the same time decreases the entering volume flow by decreasing the value
of the axial velocity in front of the compressor.

When a rotor is considered, the shock waves extend in front of the
entrance of the rotor and the vortices produced by the intersection be-
tween expansion and shock waves are of helicoidal type.

When the tangential velocity of the rotor U increases (from RP to
R"P" of Fig. G,6f), the Mach number at the entrance of the rotor in-
creases, and for the type of curved entrance region shown in Fig. G,6f the
point B which defines the entrance region moves from B to a position B'
closer to the leading edge of the blade. Also the point D dividing the
region of the blade, which affects the shock from the leading edge A,
from the region of the blade which affects the shock from the leading
edge E, moves ahead to a position D'. This occurs because the expansion
along AB' is smaller than the expansion along AB and therefore the
direction of the free stream velocity vector also changes from OP tangent
to the blade at D to OP' tangent to the blade at D'. Because of the sign
of the direction change obtained for the type of blade shown in Fig. G,6f
for a given increase of tangential velocity, the axial velocity changes less
than for the blade with straight entrance tangent at D (OR' in place of
OR"). The variation of the entering volume flow due to the variation of
rotational velocity is smaller for the blade considered than for the blade
having a straight entrance.

Consider now a cascade of blades having a blade shape as shown in
Fig. G,6g. Compression waves are produced at the upper surface of the
blade a along the entrance region AB; they move outside of the passage
in front of the next blade b. At the leading edge of blade b expansion
waves are produced, followed by compression waves of the same strength
produced along the upper surface EF. The wave pattern is similar to the
wave pattern considered in Fig. G,6d, but inverted; expansion waves are
produced at the leading edge followed by compression waves produced
along the entrance region. The compression waves produced along AB
between A and D interact and cancel the expansion waves produced at
the leading edge A, while the compression waves produced along DB
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interact and cancel the expansion waves produced at the leading edge E
of the following blade. In order to represent the flow in an infinite cas-
cade with a semi-infinite cascade test, the free stream velocity in front
of the first blade a must have a direction and Mach number such that,
at the leading edge A, the correct amount of expansion waves is pro-
duced to interact and cancel the part of the compression waves produced

E
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0 Ij

R'R R"

Fig. G,6f, Effect of variation of rotor speed for convex entrance curvature.

between A and D in every blade. The free stream direction must be
parallel to the tangent at D, defined as the point that divides the part
of the entrance region affecting the expansion waves from A, from the
part of the entrance region affecting the expansion waves from E. Also in
this case when the rotational velocity of the rotor (tangential velocity of
the cascade) changes, the direction of the flow at infinity in relative co-
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ordinates changes because point D moves along the surface of the blade.
However, in this case when the rotational velocity increases the axial
velocity increases in larger proportion than for straight blades. If the
tangential velocity component U changes from RP to R'P', the Mach
number in relative coordinates increases and point D moves to D'. The
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Fig. G,6g. Effect of variation of rotor speed for concave entrance curvature.

relative velocity changes direction from OP to OP' and the new value
of the axial velocity component corresponds to OR', which is larger than
OR" corresponding to the same variation of rotational velocity for a blade
having a straight entrance region tangent at D.

Blades producing detached shock waves. In a supersonic rotor cascade,
conditions can be found where supersonic flow cannot exist at the leading
edge of the blades. This can occur with blades having round leading edges
or with leading edge wedge angles greater than the maximum deviation
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possible for the incoming stream Mach number. Both possibilities have
practical importance, especially for low rotational velocities when the
entering relative Mach number is close to unity.

Consider at first a cascade having blades with sharp leading edges and
a straight entrance region (Fig. G,6h). Assume that the Mach number of
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Fig. G,6h. Compressor blades having detached shock pattern.

the flow relative to the blade is small and the blade has a wedge angle
that produces a detached shock at the leading edge of the blade. The
detached shock moves in front of the passage and a local subsonic region
exists behind the shock near the leading edge of the blade.

In order to obtain steady conditions in the flow in front of the cas-

( 396



G,7 ENTRANCE WITH SUPERSONIC AXIAL VELOCITY

cade, the shock wave at each leading edge must be neutralized by ex-
pansion waves which must also move in front of the passage; therefore
when a detached shock exists in front of each blade, the incoming flow
for steady conditions cannot be parallel to the trailing surface of the
blade AB, because in this case a stagnation point would exist at the
leading edge of each of the blades followed by a subsonic stream. The
velocity would become sonic only at a point B inside the passage where
the blade starts to curve (see VI,H), and therefore no expansion waves
could be transmitted in front of the passage to neutralize the shock, as is
required for steady coditions.

If the incoming flow is inclined with respect to AB, then expansion
waves are produced at A downstream of the shock, because the stagna-
tion point occurs at the leading surface of the blade and the Mach num-
ber along AB becomes larger than 1, while the expansion waves produced
at A move in front of the cascade. Therefore, in the cascade considered,
the direction of the entering stream for steady condition must be such
that the blade has an angle of attack.

The analysis of the flow field at the entrance region is difficult and
can be obtained only in some cases with the help of experimental investi-
gations. Also in the case of detached shocks the expansion waves pro-
duced at the leading edge A can be divided in two parts: the first part
interferes with the detached shock produced by the blade a while the
other part interferes with the shock produced by the trailing blade b; the
wave that divides the two parts corresponds to the free stream conditions
in front of the infinite cascade. If the expansion waves interact with the
following shock in a region which corresponds to supersonic flow behind
the shock, then the localized subsonic region at the leading edge of each
blade is not affected by the presence of the other blades and the same
considerations presented before can be applied. The flow field at the lead-
ing edge of the blades can be obtained from the theoretical work on iso-
lated wings having a sharp leading edge and a detached shock (see VI,H)
or from experimental data on an isolated wing under the same conditions.
If the expansion waves produced by blade a at A interfere with the sub-
sonic region of the detached shock produced by blade b, then a test or
analysis of a complete cascade configuration is required. The same is also
required when the intensity of the shock is such that reflected waves pro-
duced at the interaction of expansion waves and shock are important and
affect the subsonic region of the trailing blade.

G,7. Mechanism of Steady Flow at the Entrance of a Cascade for
Supersonic Axial Velocity.

Blades of zero thickness and zero camber. Consider a supersonic infi-
nite cascade having blades of zero thickness and zero camber as shown in
Fig. G,7a. Assume that the flow in front of the cascade is steady and that
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the axial component of the velocity OB is subsonic. For steady conditions
no waves can travel in front of the infinite cascade; therefore the velocity
OA relative to the blades in front of the passages must be parallel to the
blades. If the tangential component of the velocity AB increases, then for
steady conditions the axial component of the velocity OB must also in-
crease because the direction of the entering velocity for steady conditions
is determined by the direction of the entrance of the blades and cannot
change. This situation prevails until the axial component becomes sonic.
For the condition of sonic axial velocity OB, if infinitesimal waves are
produced at the leading edges of the blades they are contained inside the
cascade and disturbances can be transmitted upstream of the cascade

C

Shock

ZA 
A, 

wave

0 BBExpnion wovt
B B,

Fig. G,7a. Cascade having zero thickness and camber
with entering axial velocity supersonic.

only by means of shock waves of finite strength. Assume now that the
tangential component to the velocity increases from BIA, corresponding
to a relative velocity OA, parallel to the blades to a value B1C. Expan-
sion waves and a shock wave are produced on opposite sides of the lead-
ing edge of each blade, but are contained inside the passage (Fig. G,7a);
the entering velocity C is inclined with respect to the blade direction,
but the axial component does not change. No waves are transmitted up-
stream of the cascade, and therefore the conditions considered represent
a steady state. The maximum value of the axial velocity that can be ob-
tained in front of a cascade having such a blade entrance by increasing
the tangential component of the velocity of the compressor is equal to
sonic. When sonic velocity is reached, small disturbances produced down-
stream cannot increase the velocity upstream.

Consider now a change of the axial component of the velocity for a

( 398 )



G,7 • ENTRANCE WITH SUPERSONIC AXIAL VELOCITY

given value of the tangential component of the velocity relative to the
blades. When the axial velocity OB (Fig. G,7a) is subsonic, a change of
the axial velocity without a change of tangential velocity produces a
change of direction of the velocity OA relative to the blades. Then non-
stationary waves are produced at the leading edge of the blades. These
move upstream and change the axial velocity at the entrance of the cas-
cade. Therefore, when steady flow is again established in front of the cas-
cade, the axial component is again equal to OB. However, the situation is
different if the axial velocity in front of the compression is sonic; a wave
pattern as shown in Fig. G,7b for the velocity diagram OBIC then exists.

to

C A,
OAt

V"l

Fig. G,7b. Cascade having zero thickness and
camber with entering axial velocity sonic.

An increase of the axial component from OBI to OB2 produces a vari-
ation of relative velocity from OC to OA 2 (Fig. G,7b) and thus a small
deviation of compression at the leading edge of the blades which are
parallel to OA,. This increase of axial velocity is possible without pro-
ducing nonstationary waves in front of the cascade, because the Mach
number corresponding to OA 2 is larger than the Mach number corre-
sponding to OA 1 and therefore a small shock wave is still contained inside
the passage. In this case the cascade can have entering velocity with an
axial supersonic component.

The same considerations apply to a supersonic compressor. By in-
creasing the rotational speed of the rotor, the axial velocity is increased.
If the blades have a straight entrance region, the velocity relative to the
blades does not change direction; therefore the value of the axial velocity
is determined, cannot be changed independently of the rotational velocity,
and is independent of the flight conditions. This is true until the rotational
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speed is such that the axial velocity becomes sonic. Then an increase of
rotational speed cannot change the axial velocity but changes the direc-
tion of the relative velocity. For this condition it is possible to change the
value of the axial velocity component by changing the axial velocity, for
example, by changing the flight speed. The axial velocity can change from
the sonic value to a supersonic value which produces a shock at the lead-
ing edge of the blades tangent to the entrance of the cascade (angle e of
the shock equal to ee in Fig. G,7b). Therefore, for a given rotational speed
of the rotor higher than BIAI, corresponding to OB, and equal to sonic,
it is possible to have different values of the mass flow entering the com-
pressor for given rotational speed and given values of the static pressure
and temperature of the flow.

Blades having curved entrance region. When the entrance region of
the blade is curved and the axial velocity component is subsonic, expan-
sion and compression waves exist in front of the cascade, which for steady
conditions, cancel each other in front of the cascade. Consider the blades
as shown in Fig. G,6f and G,6g. When the tangential velocity increases
from OR to OR', the relative velocity changes from OP to OP' and be-
comes parallel to the tangent to the blade at a new point B' which is
closer to the leading edge A than point B. For the condition of W, parallel
to the tangent to the leading edge of the blade, the axial component V,, is
sonic and point B' is at A. For this conattion the curvature of the upper
surface of the blade does not affect the flow in front of the cascade, aLd
the entrance region AB disappears. Therefore, the same considerations
previously applied to straight blades are valid when the tangential veloc-
ity is larger than the velocity corresponding to sonic axial velocity and
when the axial velocity is supersonic.

G,8. Mechanism of Starting.

Single passage. In the preceding sections the flow conditions at the
entrance of the cascade have been discussed as functions only of the de-
sign of the entrance region of the blades. It has been assumed that the
downstream conditions do not interfere with the upstream flow. Here the
effect of the geometry of the blade downstream of the entrance region and
of the exit conditions on the entering flow properties are discussed.

Consider first a single passage as shown in Fig. G,8a. Assume that
supersonic flow exists in the converging part of the diffuser. Then the flow
inside the passage behaves as the flow inside a supersonic convergent-
divergent diffuser discussed in detail in VII,E. The transition from super-
sonic to sabsonic velocity can occur, for steady conditions, only in the
divergent part of the passage; for example, at a section 3 between the
throat 2 and the exit 4 of the passage or downstream outside the passage.
The position uf the transition region 3 depends on the value of the static
pressure at the discharge section 4 and can be changed by changing flow

(400



G,8 • MECHANISM OF STARTING

properties at the end of the passage; for example, by increasing the static
pressure at the discharge as in a throttling process.

By changing the position of the shock 3, the static pressure, the stag-
nation pressure, and the volume flow passing at 4 change. However, the
mass flow and the volume flow of the stream tube at free stream con-
ditions are not changed; therefore, so long as the throttling is such that
region 3 is downstream of the throat, the throttling process does not influ-
ence the conditions at the entrance and the entering mass flow.

If the back pressure is increased, the shock 3 moves toward section 2,
becomes weaker, and the pressure recovery of the diffuser increases. If

o A2
/// M> I M> ! M<l

Ao

Fig. G,8a. Single blade passage with shock swallowed.

/// M< I M<1

0 4

Fig. G,8b. Single blade passage with shock not swallowed,

the throttling downstream is still increased, the shock moves from the
region of the throat to the front of the passage (Fig. G,8b) because no
stable configuration can exist with the shock in the convergent region.
With the shock in front of the passage the flow between sections 1 and 4
is all subsonic, and the mass flow entering the passage is affected by the
throttling process; therefore, it can be changed by changing the conditions
downstream of the passage.

If the back pressure at 4 is again decreased, the strong shock wave,
which establishes the transition from supersonic to subsonic flow, moves
again inside the passage provided the area contraction ratio A I/A 2 is such
that the diffuser can start. If the contraction ratio AI/A 2 is too large the
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strong shock remains in front of the diffuser. However, when the back
pressure decreases, sonic velocity is reached at section 2 and the flow
downstream of section 2 becomes supersonic; a transition region 3 again
exists in the diverging part. In this case, the passage is "choked" and
downstream conditions again do not affect the flow field at the entrance;
the entering mass flow is again independent of the downstream pressure
conditions.

The possibility of the passage starting or not starting at the incoming
stream Mach number Mo is discussed in detail in VII,E and can be briefly
presented as follows: The minimum value of As for given values of A0
and Mo corresponds to M, = 1. If the transformation is not isentropic,
the relation between Ao and A 2 for given values of Me and M2 is given
for one-dimensional flow by

(A2 \ plg _ A2
To. F (8- )

where (A2/Ao),. represents the ratio for isentropic transformation from
Mo to M2 = 1, and pg/p2s is the ratio between the stagnation pressures at
0 and 2; this ratio is larger than I because of the increase of entropy in
the flow between sections 0 and 2.

The transformations between stations 0 and 1 in front of the shock
and inside the diffuser between 1 and 2 occur with small increases in
entropy and are, therefore, nearly isentropic. All the losses can be con-
sidered in the first approximation to occur across the strong shock at
station 3 (Fig. G,8a) or across the shock in front of station 1 (Fig. G,8b).
Then when the flow is supersonic in the diffuser as in Fig. G,8a, the ratio
A2/Ao can be close to the isentropic value, while in order to satisfy the
continuity law for the condition of Fig. G,8b the ratio A2/A' at the same
Mach number Mo must be smaller than A0 of Fig. G,8a.

In order to have the possibility of pushing the strong shock inside the
passage, it is required that when the shock is at station 1, Ao = A';
therefore, if A2 corresponds to the value determined from isentropic
transformation for M2 close to 1, the diffuser cannot start unless the
value of free stream Mach number Mo is increased.

The starting Mach number is a function of the contraction ratio
A2/A 0 and of the Mach number 3l, at the entrance of the channel (and
not of M0). The difference between the isentropic contraction ratio and
the starting contraction ratio increases when il, increases; therefore, the
Mach number M2 for supersonic flow between stations 1 and 2 increases
when, for a given Mo, M, increases, while the losses due to the increase
of entropy in the passage also increase.

Infinite cascade. Similar considerations can be made when in the
place of a single passage a cascade is considered.

Consider first a cascade having diverging passages (without internal
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contraction). In this case, supersonic flow can be established inside each
passage for any supersonic Mach number in front of the cascade, for a
condition downstream of the cascade corresponding to no-throttling.

0
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'I\\

~ \ N
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Fig. G,8c. Cascade with detached shock pattern.

When the pressure at the exit of the cascades is increased, the region

of transition from supersonic to subsonic velocity moves upstream until

it reaches the entrance of the cascade (Fig. G,8c). For this condition,

detached shocks exist in front of each blade and compression waves move

upstream. These waves decrease the value of the axial entrance velocity

component corresponding to the free stream condition, so that the value
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of the mass flow entering each passage decreases. The compression waves
which move upstream change the direction of the entering velocity; there-
fore the blades are at an angle of attack, and the equilibrium conditions
for each value of the throttling are similar to those described in connec-
tion with Fig. G,6h. In this case, however, the flow inside the passage is
all subsonic. The detached shock existing in front of each blade is canceled
by expansion waves produced at the leading edge of the preceding blade;
no waves extend to infinity. Under some conditions local separation can
occur on the trailing surface of the strong shock and interferes with the
boundary layer on that surface of the preceding blade; then instability
of the flow field can occur.

Each blade produces first a shock wave and then a fan of expansion
waves. Therefore the free stream tube entering the passage for choked
conditions is less than the free stream tube which would enter the pas-
sage in the absence of detached shocks. The continuity law can thus be
satisfied. The expansion waves produced at the leading edge of the blades
and in front of the passage must cancel the detached shock for steady
conditions.

Consider now the case of a cascade having some internal contraction.
In this case, when the tangential velocity is increased from low values to
larger values, the Mach number in front of the cascade increases. For
some tangential velocity, the velocity at the throat of the passage be-
comes sonic, while the velocity in the converging region is still subsonic.
The free stream velocity at infinity in front of the cascade i. supersonic;
therefore, the transition from supersonic to subsonic flow must occur in
front of the passage (Fig. G,8d). The strong shock in front of each pas-
sage produces a deviation of the flow in front of the next blade; therefore,
each blade has an angle of attack. Expansion waves are produced at the
leading edge of each blade which interfere with the preceding and with
the following shocks, and for equilibrium conditions expansion waves and
shocks cancel completely at infinity. These waves persist as the tangential
velocity increases. Until the contraction ratio AI/A 2 corresponds to the
value given by the criteria outlined for single passage, however, the inten-
sity of the waves decreases when the free stream Mach number increases.
A decrease of the static pressure at the exit of the cascade increases the
supersonic' expansion in the divergent part of the passage, but the flow in
the converging part remains subsonic as for the case of the single passage.

When the flow is not started, less mass flow enters the cascade than
for started conditions and the pressure recovery across the cascade de-
creases; therefore, the associated compressor under choked conditions
has a lower efficiency than under started conditions.

Starting Mach number depends on the contraction ratio of the pas-
sages and on the blade shape at the entrance. In a supersonic rotor the
passages can be started by increasing the rotational speed of the rotor.
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When the passage has started, it is possible to decrease the rotational
speed of the rotor below the value corresponding to starting conditions,
still maintaining supersonic flow inside the passage as for the case of a
convergent-divergent diffuser (see VII,E). For these conditions the pros-
sure recovery of each passage is higher than for the case of an unstarted
compressor and the mass flow entering the compressor is larger.

The influence of the shape of the blade entrance region on the starting
conditions can be illustrated from the following considerations:

Consider the blade design shown in Fig. G,8d. The entrance region is
straight and the entrance section A 1 is larger than the minimum section

0

T

A

Fig. G,8d. Cascade with detached shock pattern having no entrance compressions.

A 2. Assume that the internal contraction is such that for the stream veloc-
ity considered the passage is choked. Then the wave pattern in front of
the cascade will be as shown in Fig. G,8d. If separation is avoided along
AF the relative velocity in the region AEF is in a rough approximation
parallel to the surface AF.

Consider now the blade of Fig. G,8e, obtained from the blade of Fig.
G,8d, by curving the surface from AF to AF', in such a manner that
compression waves are produced along AF' and that these compression
waves are contained inside the passage in the absence of normal shock in
front of the passage. The compressions reduce the Mach number in front
of the strong shock; thus they increase the pressure recovery p0/pl which
enters in Eq. 8-1, decrease the starting Mach number, and permit a
larger area contraction which corresponds to a larger pressure recovery
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for a given starting Mach number. The opposite result is obtained if ex-
pansion waves are introduced along AF.

These considerations are of particular importance when the starting
Mach number is large and the axial component is close to sonic or issupersonic. In this case, the amount of compression which can be pro-

duced in front of the strong shock along AF' is large. For started con-
ditions, the compression waves can be reflected at the upper surface of
the passage and hence the advantages of passages having external corn-
pression can be effectively utilized.

The flow field in front of the unstarted cascade is similar to the flow
field in front of a single diffuser and differs only in the mechanism of

Fig. G,8e. Cascade with detached shock pattern having entrance compressions.

cancellation by means of expansion waves of the strong shock produced
at the entrance. It is known that convergent-divergent diffusers can en-
counter phenomena of instability called "buzz" when the flow at the
minimum section is subsonic (see VII,E). These phenomena of insta-
bility are due to differences of pressure recovery in different regions of
the stream entering the passage and to interference between shocks or
strong pressure gradients and the boundary layer. These phenomena can
be expected to occur also in supersonic cascades or in supersonic com-
pressors and can lead to stalling in the rotor.

G,9. Mechanism of Steady Flow at the Exit of a Cascade for
Supersonic Discharge Velocity.

Equilibrium conditions determined by static pressure. In this article
the equilibrium conditions at the exit of a cascade are discussed for the
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condition of supersonic exit velocity such as exists in shock in the stator
compressors. It is assumed at first that the equilibrium conditions can be
obtained by fixing only the value of the static pressure behind the com-
pressor and not both static pressure and direction of the stream in the
downstream flow. This assumption corresponds to requiring the condi-
tions downstream of the cascade to be effected by only the axial com-
ponent of the exit velocity while the tangential component of the exit
velocity is determined only by the cascade design. However, when the
axial component of the discharge axial velocity is subsonic, an effect of
the downstream conditions on the tangential velocity is possible. This
case is discussed later.

Consider a cascade having converging and diverging, or all diverging,
passage. The velocity diagram at the exit of the cascade depends upon
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Fig. G,9a. Velocity diagrams at rotor exit.

the conditions at the exit. If the static pressure at the exit of the cascade
is sufficiently low, the stream leaving the cascade has supersonic velocity,
while for larger values of the back pressure, the stream leaving the cas-
cade is subsonic and transition from supersonic to subsonic velocity occurs
inside the passage. By changing the back pressure, the value of the veloc-
ity at the exit and its axial component can be gradually changed from a
maximum value which corresponds to sonic or supersonic axial velocity,
depending upon the cascade design to zero. During the throttling process
a wave pattern is produced in the flow at the exit of the rotor which can
be described by means of two-dimensional considerations [14].

Assume that the blades near the exit region are straight and have
zero thickness and that the flow at the exit of the passage is uniform
(Fig. G,9a). Assume that the exit relative velocity W2 is supersonic and
parallel to blades at the exit while the axial velocity component for the
blade design considered is subsonic V., < a2 (a2 speed of sound at the
exit). The absolute exit velocity V2 is also supersonic.

If the static pressure at the exit of the cascade is lowered with respect
to the value considered in Fig. G,9a, there exists at. the exit of each pas-
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sage an expansion which tends to increase the velocity inside the passage.
Because the velocity inside the passage is supersonic but the axial com-
ponent is subsonic, the expansion is propagated inside the passage from
the trailing edge of each blade by means of expansion waves (Fig. G,9a,
left and center). The region A D of the lower blade of each passage is
affected by the expansion induced at the trailing edge of the upper blade
of the passage, and along AD the expansion waves are reflected.

The amount of expansion occurring between wave AC and the exit
CD depends upon the difference of pressure required at C. However,
when the axial component of the velocity at the exit CD becomes sonic,
the expansion wave from C is along CD; therefore, a further decrease of
the downstream pressure does not affect the velocity at the exit of the
rotor but changes only the conditions downstream of the rotor. There-
fore, for the design considered, the maximum value of the axial compo-
nent of the flow at the exit CD is equal to sonic velocity. At the trailing
edge D of each blade, the direction of the stream and the pressure cannot
have discontinuous values; therefore, in order to obtain equilibrium
conditions at D, a wave D( exists at the trailing edge of the upper
surface of the blade. This wave has opposite sign and the same intensity
as the expansion waves CAD produced at the lower surface of each
blade.

The shock wave moves downstream in the flow in nearly the same
direction of the waves AE and BF produced by the reflection at the lower
blade of the passage of the expansion waves from C and tends to neu-
tralize these waves. The compression wave DG produces an increase of
entropy in the flow downstream of the cascade.

If the pressure at the exit of the cascade is increased with respect to
the condition considered in Fig. G,9a, left, a shock wave CA is produced
at the trailing edge C (Fig. G,9a, right), which is reflected at the lower
surface as another shock wave AE. At the trailing edge D of each blade,
on the opposite surface from the shock wave DF, an expansion fan is
produced in order to obtain equilibrium of pressure and direction of flow
at the trailing edge. The expansion fan tends to neutralize the reflected
shock wave EA.

The intensity of the shock wave A C of Fig. G,9a, right, increases with
increasing of the downstream pressure until the reflection at A of the
shock wave AC is not possible. Then if separation is avoided at A, the
reflection of the wave AC becomes a Mach reflection. The shocks CA
and AE form a lambda shock with a leg normal to the surface AD. The
flow behind the shock is subsonic and becomes again sonic at D by
expansion.

When the reflection of the shock wave at A produces separation, the
separation travels upstream of the reflection point producing compression
waves in front of A. The shock CA is then reflected at the separated
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region and the reflected waves at some distance from the surface A D
have the same intensity as in the absence of separation.

For larger values of the back pressure, the flow behind the shock CA
becomes all subsonic, the strong shock from C becomes normal to the
surface A D and then moves gradually upstream in the passage as the
back pressure increases. For this condition the discharge velocity W, is
subsonic and the considerations discussed in Art. 8 apply.

In practical cases the flow at the exit of the passages is not uniform
because the blades have finite thickness and the passages are short; then
the condition of no waves downstream of the passage as shown in Fig.
G,9a, left, is not possible. However, in this case the equilibrium conditions
at the exit of each passage can still be determined from considerations
similar to those presented previously. For each value of the static pres-
sure at the trailing edge of each blade D of the cascade, the intensity of
the waves CAB of Fig. G,9a, center, or CA of Fig. G,9a, right, can be
determined. From the velocity distribution in front of wave CA the flow
field between CA and CD can be determined. Then the intensity of the
wave DG in Fig. G,9a, center, or of the waves DE in Fig. G,9a, right,
can be obtained from the consideration that at D the pressure and flow
direction are known.

Consider now a cascade design for which the condition presented in
Fig. G,9a, left, corresponds to supersonic axial velocity (V,, > a,). Then
the downstream conditions can change the flow at the exit of the passage
only by means of shock waves. The conditions corresponding to Fig.
G,9a, center, are not possible because expansion waves from C move
downstream of the passage. However, a wave pattern as shown in Fig.
G,9a, right, is still physically possible.

In this case, an increase of the back pressurn with respect to the
values corresponding to Fig. G,9a, left, tends to produce a shock that
at first is normal to the direction of the axial flow component. This shock
moves toward the exit section of the cascade and then becomes attached
at the exit CD of the cascade (Fig. G,9a, right). For this condition, the
flow at the exit of the cascade has a subsonic axial component. A further
increase of the back pressure pushes the shock inside the passage as for
the case discussed before.

Interference between waves produced by different stages. In the pre-
ceding discussion, the flow fields at the entrance or exit of a cascade have
been analyzed under the assumption that the flow at infinity in front of
the cascade was uniform or that the flow at the exit of the cascade also
for the case of supersonic exit velocity was a function only of the design
of the cascade considered and of the discharge static pressure. However,
in practical applications, other rotor or stator stages, preceding or follow-
ing the element of the compressor considered, can change the upstream
or the downstream flow. Thus waves which move downstream or up-
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stream in the flow and which enter the following or the preceding stage
can be produced. These waves interfere with and change the wave pattern
discussed previously.

Interference between different elements, such as rotor and stator, as
guide vanes and rotor of a given stage or as stator and rotor of two differ-
ent stages exist in any. practical machine. The analysis of this interference
is involved.

One aspect of such interference can be qualitatively illustrated by
assuming in first approximation that the flow is two-dimensional in each

cylinder parallel to the axis of the machine and by neglecting the bound-
ary layer effects. Consider two elements of a machine, one of which is in
movement with respect to the other and assume that the velocity rela-
tive or absolute leaving one of the elements and entering the other is
supersonic.

When waves are produced at the exit region of the first element, the
waves travel downstream and are partially reflected at the entrance
region of the second element. If the axial component of the flow is sub-
sonic, the reflected waves travel upstream. Therefore, in this case, a train
of waves moves from one element to the other. The intensity of these
waves depends on the distance in the axiq' direction between the two
elements, because waves of opposite sign and of the same family as those
produced by a cascade, tend to neutralize each other and to become zero
at an infinite distance. However, because of the relative motion existing
between the two elements, the intensity and sign of the waves depends
also on the relative position of the two elements in the tangential direc-
tion. This relative position changes with time, and therefore the flow con-
ditions at the exit of one element and at the entrance of the other, also
change with time. Pulsating conditions in the flow between the two ele-
ments can be established for particular geometrical conditions and for
particular values of the relative velocity.

Consider, for example, a rotor having supersonic exit relative velocity
W2 with subsonic axial component V,, (Fig. G,9b). Assume for simplicity
that the blades of the rotor and of the stator have zero thickness. Call
W' and V' the velocity vectors in rotating and absolute coordinates of
the flow inside the rotor passage at the exit of the rotor and in front of
any wave AB produced at the trailing edge of the rotor blades (Fig. G,9b);
call W2 and V 2 the corresponding velocity vectors of the stream at the
exit of the rotor downstream of the trailing edge of the blades, and there-
fore downstream of any wave A B existing inside the passage and produced
at the trailing edge. The angle between the vector W' and W 2 is due to
the deviation produced by the wave BA. The waves AD and the expan-
sion fan bounded by BE and BF produce equal and opposite deviation.

If the value of the tangential velocity U is such that the resultant
vector V' is not parallel to the stator blades, then the waves A B, AD
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and AE, AF are produced at the exit of the rotor such that the velocity
vector Vt is parallel to the stator blades. The reason for the existence of
this wave pattern is that, as shown in Art. 5, the stator cannot accept
for steady conditions a supersonic flow field with subsonic axial velocity
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Fig. G,9b. Rotor exit with supersonic relative velocity and subsonic axial velocity.

at an angle of attack with the blade entrance region; when the incoming
flow is at an angle of attack, the stator produces a nonsteady family of
waves that moves upstream. These waves reach the rotor exit, become
steady waves at the rotor exit and change the exit velocity from V' to V2.
If the rotor and stator were far apart from each other, the equilibrium
conditions would correspond to a wave pattern at the exit of the rotor
as shown in Fig. G,9b. The compression wave AD of Fig. G,9b would be
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canceled by the following expansion waves EB, FB and no waves would
exist in the flow in front of the stator. However, in the case of a small
distance between rotor and stator, some of the downstream waves are
reflected by the stator before being neutralized.

In Fig. G,9c, the wave pattern for a given position of the rotor, with
respect to the stator, is presented in stator coordinates. In this repre-
sentation the trajectory of the particles in absolute coordinates is con-
sidered and therefore the lines a, b, c, and e do not represent the shape
of the rotor blades but are parallel to the absolute velocity vector V3.
The equilibrium conditions without interference would correspond to the
conditions at blade a. A shock wave is produced inside the passage which
is reflected at A. The region AB is the exit region and at the trailing
edge B expansion waves are produced which tend to cancel the com-
pression wave reflected at A. However, if stator blades are present, ex-
pansion waves and compression waves can be reflected before they are
canceled and can interfere with the other passages. Because of the inter-
ference of the stator blades at some blade position (blades c and d), the
compression waves reflected along AB have twice the intensity of the
compression waves reflected along AB at the position a. Then the ex-
pansions and compressions produced at the trailing edges are also twice
as strong. The increased pressure gradient along AB can produce large
variations in the flow conditions at the exit of the passage with the possi-
bility of pulsation in the flow.

If the axial component of the velocity is supersonic, the flow condi-
tions at the exit of the rotor are steady because the waves produced by
the stator cannot move upstream; variations occur only at the stator
entrance. Therefore this type of interference is not possible.

If the velocity inside the rotor is subsonic in rotor coordinates, and
supersonic in stator coordinates, the waves BA of Fig. G,gb are transient
and travel upstream in the passage and are absorbed at the region of

transition from supersonic to subsonic flow which in this case is pulsating.

G,10. Three-Dimensional Effects. Supersonic compressors can be
designed to have an axial velocity component very close to sonic. With
other conditions fixed, they can compress more mass flow per unit frontal
area of the compressor annulus than subsonic or transonic compressors.
However, this advantage is small when transonic or high velocity sub-
sonic compressors are considered. Therefore, in order to be competitive
from the point of view of mass flow per compressor frontal area, the super-
sonic compressor must be designed with a large annular area; that is,
with long compressor blades, resulting in a root-to-tip diameter ratio of
the same order as the subsonic or transonic compressors. For small values
of the ratio of the root-to-tip diameters the change of velocity diagram
along the blade is very large due to the large change in rotational velocity.
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The two-dimensional considerations presented before must be modified
in order to take into account large three-dimensional effects.

The three-dimensional effects are important both for the inviscid and
for the viscous phenomena and have a primary influence on the perform-
ances of supersonic compressors. Their analysis is very complex and at
present incomplete. A few of the known effects on the inviscid flow are
briefly outlined here.

Three-dimensional effects at the entrance of the compressor. Consider a
supersonic rotor having blades with straight leading edges and uniform
axial velocity at the entrance of the compressor. In order to have con-
stant entrance axial velocity along the blade height, the blade entrance
sections must be rotated from root to tip of the blade according to the
change of the rotational speed, Fig. G,10a (sections a, and b1). The Mach
number of the velocity relative to each blade section increas, moving
from the hub to the tip of the blades, while the static pressure in front of
the compressor is constant. This type of velocity diagram does not intro-
duce any special difficulty in the design of a shock in the stator com-
pressor. In this case the work is produced in the compressor by large
turning in the passage, without a large reduction of relative speed in the
rotor, and therefore without an appreciable static pressure rise. The same
amount of work at the tip and hub of the compressor can be obtained
by introducing a different amount of turning along the blade height.
However, such a velocity diagram can introduce complications for the
design of a shock in the rotor compressor where transition from super-
sonic to subsonic velocity occurs in the rotor passage. This transition is
efficient only if the Mach number in front of the shock is reduced to the
minimum value possible. Then the passage must be contracted as much
as possible according to the starting considerations. Now if the design is
based on two-dimensional considerations, then a larger contraction ratio
of the passage is required at the tip, where the Mach number is larger,
while from geometrical and structural considerations a larger contraction
of the passage near the hub and a smaller contraction near the tip of the
blades are required, in order to obtain a convenient thickness distribution
along the blade. This difficulty can be solved only by introducing three-
dimensional effects inside the rotor passage, for example, by contracting
the annulus in radial direction (which is discussed later) or by introduc-
ing three-dimensional effects in front of the passage by twisting the blade
leading edge in a convenient way.

Assume, for example, that the cross sections of the blades at different
radii considered before in Fig. G,10a and indicated as section a, and b1
are twisted as shown in Fig. G,10a by sections as and bi. This twist is such
that the value of the entering axial velocity decreases at the tip of the
blades and increases at the hub of the blades. Because of this change the
difference in relative Mach number between hub section and tip section
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of the blade in the second design is smaller than in the first design. The
static pressure at the entrance of the compressor is not uniform because
the absolute velocity is not uniform. The streamlines are not parallel to
the axis of the compressor. In the second design, the axial velocity at the
hub can at most be sonic and the velocity at the tip must be somewhat
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Fig. G,lOa. Three-dimensional effects at blade entrance.

below sonic; therefore, in the second design a decrease in mass flow with
respect to the maximum possible for the same frontal area must be
accepted.

Similar three-dimensional effects can be introduced by using blades
having the leading edge swept with respect to the radial direction.

Three-dimensional effects inside the passage. The three-dimensional
effects inside the passage can be produced by several differert sources:
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the entrance conditions can be nonuniform; static pressure gradients can
exist at the entrance of the rotor, due to the direction and intensity of
the relative velocity at the entrance along the blade and to the existence
of a radial velocity component. Centrifugal effects produce static pres-

Tip

800 ft/sVc

10 0 0 ft/se c 
W .

114 2

ip

Hub 

"

Axis

Fig. G,10b. Three-dimensional effects in blade pasage.

components.
sure gradients inside the passage which usually results in radial velocity

In practical compressor design, the passagu must be highly three-
dimensional. Large variations of the height of the annulus are usually
required in order to permit the independent choice of the entrance and
the exit velocity diagram while the blades have sharp trailing edges. Con-
sider, for example, the velocity diagram shown in Fig. G,10b. The axial
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velocity at the tip is equal to 800 ft/sec and at the hub is equal to
1000 ft/sec, while at the exit the axial velocity at the hub is equal to
1200 ft/sec and at the tip is equal to 1350 ft/sec. The flow in relative
coordinates has been slightly decelerated along the passage and the static
pressure has increased, and at the same time the axial component at the
exit of the rotor is larger than at the entrance. The annular area at the
exit must be smaller than the annular area at the entrance in order to
satisfy the continuity law. The contraction of the annulus in Fig. G,10b
is produced at the root of the blades. In this way the rotational velocity
at the hub exit is larger than at the entrance.

Three-dimensional effects are important and can be analyzed with
some approximation in the absence of large viscous effects for the super-
sonic part of the flow. Experimental evidence exists which indicates that
these effects can influence sensibly the performance of the machine. For
the supersonic part of the flow field two different types of analyses have
been performed [15,16,17,18,19]. The rotor has been represented as a rotor
having an infinite number of blades. With this approximation the flow
properties inside the passage become a function only of two spacial co-
ordinates x and r. The x axis corresponds to the axis of the compressor:
r is the coordinate in the radial direction. Distributed body forces are
introduced in order to represent the load on the blades. In this approxi-
mation the variation of flow properties from point to point on a cylindrical 4
surface is neglected.

The second method is based on the linearized characteristics method
described in VI,G. The flow is considered three-dimensional but the
three-dimensional effects are assumed small. The flow is considered as a
basic nonlinear two-dimensional flow on each cylindrical cross section of
the compressor plus a linear flow; the linear flow which is superposed on
the basic two-dimensional flow takes into account the three-dimensional
effects. This method permits the shape of the blade to be considered.
Both the methods can be used for stationary or rotating elements. The
method of (17] can be extended to the case where the radial and axial vari-
ations are considered large and the variation in tangential direction can
be considered small and need be determined only in first approximation.

An application of the first method to a compressor design has been
discussed in detail in [191. An application of the second method has been
presented in [20). A typical comparison between experimental and theo-
retical data obtained with the method of [191 is presented in Fig. G,10c
and G,10d (from [20]). In Fig. G,10c the shape of the passage is shown
while in Fig. G,10d a comparison between the Mach number distribution
along the walls obtained from the two-dimensional analysis, from the
three-dimensional analysis, and from measurements is given for a station
at the middle region of the passage.

Three-dimensional effects are more difficult to analyze when tran-

( 417 )



G - THE SUPERSONIC COMPRESSOR

sition from supersonic to subsonic flow occurs in the passage, because
it ;s necessary to determine accurately the shape of the shock which is
sensitive to three-dimensional effects and to the presence of the bound-
ary layer. Efficient transition from supersonic to subsonic flow in com-
pressor passages is required in order to have efficient compressors. The
values of pressure recovery measured in isolated passages of axially sym-
metric or two-dimensional-type diffusers having uniform inlet flow are
sufficiently high to permit high efficiency in supersonic compressors to be
expected, when it is assumed that the same values of pressure recovery
can be realized in machines where large three-dimensional effects are

Au$ t 2 3  Section I Section 2

p''sue Surfoce L

S2 
__ _ _ Section s3

Sttion_1 K
Fig. G,10c. Typical three-dimensional blade passage.

present. It is also possible that an understanding of three-dimensional
effects and of boundary layer phenomena could permit the realization in
compressor passages of pressure recoveries higher than those measured in
isolated passages having essentially one-dimensional flow. However, the
three-dimensional effects can also produce large losses of pressure recovery.

Consider, for example, a convergent-divergent passage stator for a
shock in the stator compressor. Assume that the velocity and Mach num-
ber and total enthalpy at the rotor discharge are such that they are much
larger at the tip than at the root of the passage. The variation of static
pressure along the passage is determined by three-dimensional effects.
If the shape of the passage is not carefully chosen, it may be impossible
to decelerate such a flow efficiently because the pressure rise along the
passage is dictated by the equilibrium between both the high and the low
total enthalpy parts of the stream. Unless large centrifugal effects are
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introduced, for example, by curving the annulus of the passage, the static
pressure cannot change a large amount in the radial direction from the
hub to the tip of the passage. Therefore it is not possible to decelerate
the high enthalpy region of the stream to very low Mach numbers. This
deceleration would produce a static pressure rise which cannot be achieved
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Toimensional analysis

, Three-dimensional o nlysis
2.4

2.2 sco

2.0P

Distance s along compression side
Fig. G,10d. Comparison of theoretical and experimental

results for passage shown in Fig, G,10c.

in the part of the stream having lower total enthalpy unless large mixing
takes place during the deceleration, Such a rise in the static pressure may
be larger than the stagnation pressure of the low total enthalpy stream.

Three-dimensional considerations and the correct use of centrifugal
forces can eliminate this difficulty and can improve significantly the com-
pressor performance. Similar considerations can be made for the shape of

the shock. In this case the equilibrium of the static pressure in front of
and behind the shock determines the actual shock shape and position.
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G,11. Performance of Supersonic Compressors.

Performance at the deaigr point. Consider a rotor passage of a super-
sonic compressor and assume that the flow field in the passage can be
analyzed to a first approximation by considering only the flow field at an
average section of the passage. Assume that the passage is a convergent-
divergent one, that changes the direction of the relative velocity from the
entrance to the exit of the passage by an angle 7. The passage has a con-
traction ratio between the minimum section and a section normal to the
flow direction at the entrance equal to A1./A, and an expansion ratio
between the minimum section and the section normal to the flow direction
at the exit equal to A.,/A 2 (Fig. G,1 la). The performance of such a rotor
is a function of the entrance velocity diagram and of the exit pressure.

At a given rotational speed of the rotor the work done by the rotor is
a function of the static pressure at the exit. If the pressure at the exit of
the rotor is sufficiently low the flow at the evit of the rotor is supersonic;
a gradual increase in the back pressure moves the transition from super-
sonic to subsonic flow gradually upstream toward the minimum section.
When the shock moves from outside to inside the passage the velocity
diagram at the exit of the rotor changes and the adiabatic efficiency of
the rotor also changes. When the shock is inside the rotor the maximum
efficiency corresponds to the condition of the shock near the throat of
the convergent-divergent passage.

The amount of work performed by the rotor is a function of the exit
Mach number and of the turning angle of the passage. It can decrease or
increase when the static pressure at the discharge is increased, depending
on the value of the turning angle r. If the flow at the exit of the rotor is
turned in the direction of the axis only slightly, then the turning angle r is
smaller than the angle #I between the relative entering velocity W, and
the axis; the angle ft between the relative exit velocity W, and the axis
has the same sign as 01. Then a decrease of the exit relative velocity
corresponding to an increase of the value of the discharge static pressure
produces an increase of the work performed (Fig. G,11a) because the
variations AV, of the tangential component of the relative velocity in-
creases when W: decreases. In this case a compressor with subsonic exit
velocity (Fig. G,11a, bottom) produces more work than when the exit
velocity is supersonic (Fig. G,11a, top). The reverse is true if the value of
the turning angle r is larger than the angle 01 between M,.,, and the axis
(Fig. G,11b) and #2 is negative. A decrease of the exit velocity or an in-
crease of the discharge static pressure produces a reduction of the amount
of work produced. This characteristic could produce instability in the
case of an actual engine.

The adiabatic efficiency of the rotor is a function of the pressure
recovery of the passage and of the amount of work performed. In order
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to obtain high values of the compression ratio, it is convenient to pro-
duce large turning angles in the rotor; however, it is difficult to produce
large turning in a passage having transition from supersonic flow to sub-
sonic flow in the rotor. The turning of the flow produces large pressure
gradients along the surface of the passage, which interfere with the shock

M.~ ~J~eM.

Subsonic exit velocity

Fig. G,11&a. Velocity diagrams for compressor with v l

Supersonic exit velocity

Ave

Subsonic exit velocity

Fig. G,lb. Velocity diagrams for compressor with r > p.

inside the passage and tend to produce local separation of the boundary
layer. Therefore, in order to obtain high values of the compression ratio
it has been considered practical to turn the flow in the rotor without pro-
ducing a large static pressure rise and then to decelerate the flow in the
stator (shock in the stator compressor). In this type of machine the adi-
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abatic efficiency of the rotor is very high because the turning can be per-
formed with high pressure recovery (see e.g. [141). However, large losses
are encountered in the stator where the flow must be turned to the axial
direction and must be decelerated to subsonic speed. However, the stator
can in principle be designed with boundary layer control and variable
geometry and hence can produce efficient deceleration from supersonic to
subsonic flow.
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Fig. G,Ilc. Comparison of the total pressure ratio characteristics
of shock in rotor and shock in stator compressors.

In the absence of systematic experimental data, the possible perform-
ances of supersonic compressors with shock in the rotor or shock in the
stator have been determined analytically and are presented in Fig. G,llc
to Fig. G,1 i. Similar data can be found in [14,211. Experimental data for
shock in the rotor compressors are presented in 113,22]. The analysis has
been performed with the following assumptions: For the case of the shock
in the rotor compressor the stagnation pressure recovery of the rotor pas-
sage in relative coordinates has been assumed equal to the pressure re-
covery across a normal shock for the value of the relative Mach number
at the entrance of the passage. The stagnation pressure recovery of the
following stator has been assumed constant and equal to 0.95. For the
case of shock in the stator compressor the stagnation pressure recovery
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in the rotor passage in relative coordinates has been assumed constant
and equal to 0.95, while the stagnation pressure recovery in the stator
has been assumed equal to stagnation pressure recovery across a normal
shock for the Mach number entering the stator. In Fig. G,llc the single-
stage pressure ratio pv/PO for shock in the rotor and shock in the stator
compressors is presented as a function of the axial entering Mach num-
ber M.,. The turning angle i and the rotational Mach number Me, at a
section considered representative of the compressor are included as pa-
rameters. In the data of Fig. G, I c the rotor passage for the shock in the

Shok in the rotor Shock in the stator

0.0 w o r 0.Nomrsor

2 20
4C "

C 0.80 O 0.80
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< 0.70 0.606 ?

0.6 0 -0 "

80 .00 1.20 :o 00 1.20
M 11 M 1,

Fig. G, lId. Comparison of the adiabatic efficiency characteristics
of shock in rotor and shock in stator compressors.

rotor compressor has been assumed to have an area ratio A,/A, equal to
1.20 and for the shock in the stator compressor the value of 1. (The
quantity A 2/A 1 is defined in Fig. G,1la) Three values of the tangential
velocity of the rotor at the representative section of the rotor have been
considered; these values correspond to Me, = 1.2, 1.4, and 1.6. Three
values of the turning angle r as defined in Fig. G,1la have been con-
sidered. The values of r chosen for the shock in the rotor compressor are
r = 00, 200, 400 while for the shock in the stator compressor they are

r = 400, 60°, 80*. Because of the large turning angles considered for the
shock in the rotor compressor, the flow at the exit of such a compressor
is turned beyond axial in a large part of the curves (0: of Fig. G,lla is
negative). In Fig. G, ld, there is given the corresponding adiabatic effi-
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ciency %A which is defined as the ratio between the increase in total en-
thalpy required for an adiabatic compression for the same pressure ratio
and the actual total enthalpy rise. In Fig. G,lie the value of the exit
Mach number entering the stator (in fixed coordinates) M, is given. In
Fig. G,1if the angles 03 between the axis and the velocity vector enter-
ing the stator are given. The angles are considered negative if the flow is
turned beyond the axis (see Fig. G,11b).

In order to give some indication of the effect of the expansion ratio
and of the effect of pressure recovery in the shock in the rotor compressor

Shock in'the rotor Shock in the stotor,€om .sorcompressor
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M11  M.1

Fig. G,lle. Comparison of rotor exit Mach numbers for
shock in rotor and shock in stator compressors.

in Fig. G,11g, the compression ratio pg/p, the adiabatic efficiency '4.4,

the exit Mach number M2 , and the exit angle 0z are presented as func-
tions of the turning angle r. As shown in these figures the pressure re-
covery of the rotor stage has an important effect on thecompression
ratio and the adiabatic efficiency of the compressor. In Fig. G,11h, the
effect of different values of the ratio A2/A1 , the pressure recovery in the
rotor, and of the pressure recovery in the stator are considered for a
shock in the stator compreAsor. It can be seen that a large gain in com-
pression ratio and in adiabatic efficiency can be obtained by improving
the stator pressure recovery.

Compressor map for supersonic compressors having subsonic axial
velocities. For a supersonic compressor the relation between the enter-
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ing mass flow and the rotational speed is determined by the blade de-
sign, and the entering mass flow remains constant provided that the flow
relative to the rotor remains supersonic. Therefore the compressor map
of a supersonic compressor when the flow relative to the rotor is com-
pletely supersonic has a well-defined shape. Compressor maps are usu-
ally obtained by plotting the stagnation pressure ratio through the com-
pressor p2/p (in absolute coordinates) as a function of the corrected
weight flow w v0/8, for given values of the corrected rotational speed
N/V-1 where w is the entering weight flow per unit area, 01 is the ratio
of total stagnation temperature at the entrance of the compressor to a
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compressor compressor
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0.80 1.00 1.20 0.80 1.00 1.20
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Fig. G,llf. Comparison of rotor exit angles for shock

in rotor and shock in stator compressors.

reference temperature, and a, is the ratio of the stagnation pressure of
the flow (in absolute coordinates) to a reference pressure. The quantity
N/v'l is a function of the rotational Mach number of the rotor

0 iND N irD TOT
60 -/v--6-T - /0 1 60 V/y T,T

or
N

= const M,,f(M,,)

where T /T is the ratio of stagnation-to-static temperature which is a

function of Me, and D is the diameter of the section considered. The
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ance of shock in rotor compressors. (Axial Mach number M2 - 1.0; tangential Mach
number Me-1.)
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quantity to N/0i/a is a function only of the axial entrance Mach number,

w = V.ig = -, g = M- R, " 3 g

or

WV6 = const Mj(M,,)

Now for a given blade entrance region and a given rotational speed the
entrance axial Mach number in a supersonic compressor is constant; so
that, provided the flow at the entrance is supersonic the variation of
to V0/,1 for a given value of the parameter N/V6 is zero. A variation
of N changes the velocity diagram at the entrance and hence changes the
value of M,,, while a change of the exit static pressure changes the veloc-
ity diagram at the exit and therefore the compression ratio and the adi-
abatic efficiency. Thus a supersonic compressor map, where the value of
the compression ratio is plotted as a function of the parameter to V /8
for any given value of the parameter, corresponds to a vertical line. An
experimental compressor map for a supersonic compressor obtained from
[221 is shown in Fig. G,IIi. Here the pressure compression ratio P/P0 as
a function of the mass flow coefficient defined as to/gAp*a* is presented
for different values of M. (p and a are the initial density and speed of
sound at the entrance.) The tests have been performed in Freon 12.

Compressor map for supersonic compressors having supersonic axial
velocities. In supersonic compressors the possibility exists that the axial
velocity at the entrance is supersonic. This can be obtained, for example,
when an airplane flies at supersonic speed. For these conditions the veloc-
ity diagram at the entrance of the compressor is not uniquely defined
by the rotational speed of the compressor and, therefore, by the param-
eter N/V0 as for the case when the axial velocity is subsonic. Thus
with a supersonic axial velocity the compressor map is different from the
compressor map corresponding to the subsonic axial velocity. A given
value of the parameter N/N/j' does not define a single value of the
parameter to N/ 1 /ai. The value of w V'/aI and of .the *compression
ratio pl/p' can be altered by changing the value of the axial velocity
component, even if the parameter N/VN/"0 and the rotational velocity
remain constant.

Consider, for example, Fig. G, 1 lj. The compressor passage is designed
in such a way that at the design rotational speed the axial velocity is
sonic. If the flight velocity is subsonic, the compressor at th" design rota-
tional speed produces sonic velocity at the entrance and the velocity
diagram is as shown in Fig. G,11j, left. The relative velocity vector
is tangent to the entrance region of the blade. However, the compressor
can accept a supersonic incoming velocity. An increase of the axial veloc-
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ity at first will reduce the expansions at the leading edge if they are
piesent; when all the expansions are eliminated by a further increase in
axial velocity, a shock is produced at the leading edge of the blade (Fig.
G,l1j, right). Because of the supersonic axial component the shock

M,. 1= 1.58
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Fig. G,1li. Experimental supersonic compressor performance from 1221.

goes inside the passage. The maximum axial component that still pro-
duces steady conditions corresponds to the condition of shock parallel to
the entrance of the compressor. The values of w -V6,/51 and p9/p0 corre-
sponding to a given value of N/x/-0l change when the axial velocity
becomes supersonic, and all the possible stable solutions of pO/pl as a
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function of W VA-/61 for a given value of N/V8 1 lie not along a single
line, as for the case of the subsonic axial velocity, but in a region of the
diagram.

A typical compressor map for a given value of N/Ve- is represented
in Fig. G,1lk. The compressor considered is a shock in the rotor
compressor and has a passage as shown in Fig. G,1lj. The rotational
Mach number is Me, = 1.4 and the axial Mach number for the design
conditions is M., = 1. The passage is assumed to have a pressure recovery
for the design condition equal to the pressure recovery of a convergent-
divergent inlet with all internal compression for the design entering Mach
number and a corresponding contraction ratio. For conditions of super-
sonic axial velocity, the losses across the inclined shock are added to the

a8
Mz,=I = M= 1.20

Fig. G,Ilj. Effect of supersonic axial velocities entering
rotor on performance of shock in rotor compressors.

losses of a convergent-divergent inlet for the given contraction ratio. The
divergent part of the passage is such that entering and exit cross-sectional
areas of the stream tube are the same. The passage does not produce any
turning between the entering and exit sections. In Fig. G,11k, the
maximum value of the pressure ratio (pO/pO). is given as a function
of M,, for a value of M,, = 1.40 and, therefore, for a constant value of
N/v'Oi. Each point between the abscissa and the curve (pO/pO). is a
possible operating point. The optimum adiabatic efficiency and the value
of the angle Og of the exit velocity with respect to the axis are also given.
The data of Fig. G,llk show that for a given value of N/V'x the
value of w V 6 can be increased above the value corresponding to
w /0 / for M, = 1, when the axial velocity is supersonic. This property
of supersonic compressors can be of interest for engines designed for super-
sonic airplanes.
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Fig. G, Ilk. Performance of a rotor having a supersonic axial entrance velocity,

at a given rotational speed, as a function of the axial Mach number.
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SECTION H

AERODYNAMIC DESIGN OF

AXIAL FLOW TURBINES

E. DUNCOMBE

CHAPTER 1. FUNDAMENTAL PRINCIPLES

H,I. Introduction. The availability of energy associated with a
compressed fluid or gas is commonly observed both as a natural occur-
renc3 (geysers, waterfalls, springs) and in many man-made tools (bellows,
waterwheels, rockets). Turbines may be defined as those devices that
make use of this energy by continuous rotary motion. However, it was
only in the nineteenth century that successful efforts were made to ob-
tain pressure energy by conversion from heat energy through the steam
boiler. At that time the turbine in the form of the windmill and water-
wheel was well known and it was thus quite natural to combine it with the
steam boiler, producing the forerunner of the modern steam turbine plant.
The high degree of technical development accomplished is well exempli-
fied by Stodola's classical treatise on the subject of steam turbines [1).

The gas turbine calls for a single-phase gas cycle rather than a two-
phase, liquid-vapor cycle, but since the turbine element is very similar its
development is largely based on earlier steam and water experience. After
the advent of flight and the development of wing theory the very con-
siderable body of knowledge accumulated on the lift and drag of wings
could be brought to bear on problems associated with blade rows. Bound-
ary layer theory, potential flow analysis, and data on high speed flow
could then be applied to the field of turbomachinery. It would be mis-
leading, however, to convey the impression that the field is not still
fraught with a number of unknowns. Problems in nonviscous flow are
largely mathematical in nature in that the equations of flow are known,
and can be solved, at least in theory, by means of elaborate numerical
techniques. On the other hand, problems relating to viscous effects (losses
in general) are of a different order since the laws governing the mecha-
nisms are still being shaped. In cases where local Mach numbers exceed
unity, shock-boundary layer interaction effects present added unknowns.
In the field of turbomachinery, unsteady flow conditions are always
present as an added complication, since each blade row experiences un-
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steady inlet conditions as it moves relative to a tangentially nonuniform
pattern of wakes from the preceding row. These effects are usually ignored
in turbine design and, in fact, there is experimental evidence that the
row spacing must be very small before they become appreciable.

In general, turbine designs proceed by the application of fundamental
physical laws where possible and otherwise by reference to a logical range
of tests from which the necessary data can be extracted.

The operation of a turbine can be explained in terms of fundamental
mechanical, aerodynamic, and thermodynamic principles, and therefore
the remainder of Chap. I is concerned with the application of these

priniciples to the study of axial flow gas turbines. Convenient parameters
are considered which define the work capacity or govern the efficiency
of the machine, and relations between them are deduced. Chap. 2 is con-
cerned with experimental data on blade performance, chiefly as affected
by the passage configuration and height. Performance is considered in the
light of both pressure loss and control of gas direction. In Chap. 3 the
presence of a three-dimensional field of flow is recognized. This chapter
deals in particular with radial variations in flow properties, though a more
general analysis is also introduced. Various phases of turbine design are
considered in Chap. 4. The final design will consist of compromises be-
tween the various factors, which affect efficiency, such as blado shape,
blade speed, the number of stages, etc., and those affecting weight and
degree of reliability. The interplay of these factors is treated in Chap. 4.
The off-design performance of single and multistage turbines is also
treated here.

H,2. Thermodynamic Properties of a Turbine.

Stagnation conditions. The paragraphs under this heading are not
intended to contain a complete treatment of the subject but to provide
the reader with an introduction to some concepts and equations which
will be widely used thereafter.

Although the gas constituting the working fluid of the turbine ele-
ment is usually composed of a variety of combustor exhaust products in
addition to nitrogen and some unburned oxygen, it is often treated as a
unique gas, the values of the specific heats c, and c, being either unique
functions of temperature or, more approximately, having some average
value. This practice is justified by the comparatively narrow range of
temperature and fuel-air ratios over which the turbine is required to
operate. The use of fuels other than hydrocarbons will thus necessitate
some revision of this method of treatment. If the working fluid can be
treated as a perfect gas the following equation of state applies [2, p. 94]

P = 6T (2-1)

p

( 434 ),



11,2 - THERMODYNAMIC PROPERTIES OF A TURBINE

where p, p, and T are absolute pressure, density, and temperature, and
MI is an experimentally determined constant.

The enthalpy h can now be defined asf dh c(dT f 
dh ci dT+ f(P) = fc,dT + f d(RT) (2-2)

Using the identity G/J = c, - c, [2, p. 99], Eq. 2-2 may also be written
A

f dh = f clT = 6, f dT (2-3)

The bar sign over c, indicating an average, will henceforth be omitted as
understood.

Tabulated values of h, c,, c,, and T are available both for pure air
and combustion product mixtures [8].

The assumption of the perfect gas law (Eq. 2-1) leads to some simple
relations between the ;as state, its velocity, and heat supplied or work
done. Under conditions of steady flow from state 1 to state 2, the com-
bined energy input from external sources, either in the form of heat or
work per pound of gas, must equal the internal energy increase plus the
kinetic energy increase plus the net work done by the gas [2, p. 35].

Heat + work supplied per pound of gas
1. + P + V2] _ c.,T, + I P, {'1N 1 V2_11
[, + 0) + j - I - (,1 +7 -1

(2-4)
Eq. 2-4 becomes, using Eq. 2-2,

Energy input per pound = h+ 2h + (2-5)

Let us now define 
2g ..IJ

Vh + h°  (2-6)2gJ

The term h is known as stagnation enthalpy. It will be seen (Eq. 2-5)
to be the enthalpy of the gas when it is brought to zero velocity without
energy exchange from the surroundings. The stagnation temperature TO

is then defined similarly to Eq. 2-2 or 2-3,

f dh ° = f cdT0 = e, f dT0  (2-7)

If the gas is also brought to rest isentropically, the isentropic law applies
as follows (2, p. 101):

pO _ T\~
= _()j (2-8)

-= _ (2-9)
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EUqt 2-8 and 2-9 define the stagnation pressure and density pO and po,

Nespeotively, where y = c,/C,.
If Eq. 2-5 and 2-6 are combined, it follows that

Energy input per pound of gas = h - h, (2-10)

ThrAbus, under conditions of steady flow, the net energy input is equal to

tme imcrease in stagnation enthalpy.
Sixice Eq. 2-6 contains a velocity term which must be measured rela-

ti vve to some frame of reference, the stagnation quantities, like energy,
khrre relative rather than absolute. The stagnation relationships relative

o the moving blades are thus defined by substituting h00 for h and W
10tor Vr in Eq. 2-6 through 2-10, for example,

h 2 = h °  (2-11)
2gJ

)efinition of efficiency. Without considering the detailed fluid me-
ek1hanics of operation it is possible to consider a turbine merely as a device
Or.r "black box" through which there is a change of state and extraction
0f1of work. The inlet and outlet gas states can then be analyzed in terms of
7what is ideally possible and what is practically achievable.

T'he change of gas state across a turbine is illustrated in Fig. H,2a.
Pr _For steady processes, the work done by the gas, in the absence of heat
trg..ransfer from the surroundings, between the state points 4 and 5, is given
b-cy hAO - hl. The corresponding pressure drop is pO - pO. If this pressure
d kiropl occurred isentropically, the work would be h,' - h6°w The efficiency
0-cuf energy conversion can then be defined as the ratio of actual to ideal

0work done by expansion from p, to p,
actual enthalpy drop = h, - h(1

isentropic enthalpy drop h4 - h(2-12)

Efficiency defined in this manner is commonly called the "isentropic-
etefficiency."

Other definitions of efficiency may be employed. In cases where the
lI.leav-ing velocity from the turbine is not recovered, for instance in sta-
tt tioaary power plants, it may be more meaningful to substitute hl - hs,, for
MA h- h0 in the denominator of Eq. 2-12.

1eheat factor. A turbine consisting of N stages each of efficiency
-i ,. is found to have an over-all efficiency ., somewhat higher than V.

1 (2, p. 163). The ratio of these two efficiencies is known as the "reheat
t factor," R, where

R _ -' (2-13)
'7Nia

An expression for the reheat factor R is most easily developed when N be-
connes infinitely large and the work per stage becomes infinitely small.
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oo... _J xStSe point at inlet

..o

04--

-C

Entropy s
Fig. H,2a. Change of gas state through a turbine.

Such a smail stage is illustrated in Fig. H,2a, dh0 and dh, being the actual
and ideal enthalpy drops across the pressure differential dp0 .

Eq. 2-12 caii then be written in differential form:

dhO

Limit value of dh = 0 fin (2-14)

The efficiency p is then sometimes known as the "small stage" or "poly-
tropic" efficiency. Eq. 2-14 leads to a relationship between end points
somewhat different from that given by Eq. 2-12. Application of Eq. 2-7
and the isentropic law [2, p. 101] leads to the relation

dp_ 1 vt p0

o, on integration between the limits 4 and 5,

T- _ (2-14)

( 437 )



H -AERODYNAMIC DESIGN OF AXIAL FLOW TURBINES

The ratio can be called the polytropic reheat factor 14. It is
related to the turbine pressure ratio in accordance with Eq. 2-12, 2-15,
r~nd 2-3, as follows-

R, A) ________ (2-16)

This relationship is shown in Fig. H,2b.

0 100
Qu.I -- - --- ---- -

0~ -- - - '

41V-

10*
in 10_____ _____

11

Fig.H,2b Reatioshi beteenisentropic efficiency, polytropic
efficiency, and turbine pressure ratio.

The efficiency of an IV-stage turbine, qj., may now be related to the
efficiency of each separate stage, ilv. through their separate polytropic
reheat factors,

-L, !_! = 1'. (2-17

RN~ - 1N./hlp liN* (-17

The significance of this relationship is that a multistage turbine, all stages
having the same efficiency, will have an ever-increasing over-all isentropic
efficiency as the number of stages increases. Therefore, if efficiency is
to be used as a criterion of excellence, comparisons on the basis of liN1, are
more valid. However, the isentropic efficiency 11. is often more convenient
to use in calculations.
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11,3. Fluid Mechanics of a Turbine Stage.
Velocity triangles. The windmill, the waterwheel, and other early

rotating devices which are made to extract energy from a fluid stream
can all be classified as turbines. The axial flow turbine from a turbojet
engine is illustrated in Plate H,3 in an "exploded" form to show the
component parts with greater clarity. It bears considerable resemblance
to its forerunners. The number of stages depends on the blade speed and
over-all pressure ratio and usually varies from one to four for aviation
gas turbines. Each stage consists of a row of stationary blades or nozzles
which serve to accelerate the gas and give it a swirl component. A follow-
ing row of rotating blades serves to absorb this swirl energy. These
blades may also accelerate the gas relative to themselves, in which case
they are said to have "reaction," which will be defined more formally
later.

The tangentially averaged gas conditions after the nozzles and blades
can be represented graphically by velocity triangles, illustrated for a
single stage in Fig. H,3a. Each triangle represents the vector relation-
ship between velocities relative to the preceding and succeeding blade
row at some chosen axial station and radius. If the annulus area varies
between the blades the triangles only represent conditions at one axial
position, the flow adjacent to the preceding or succeeding blades being
modified. Tangential velocities shown in Fig. H,3a are positive where
they are in the same direction as the blade speed U. This will normally
mean positive nozzle outlet swirls and angles but negative blade relative
outlet swirls and angles. In order to treat nozzle and blade relative con-
ditions with uniform terminology, some authors lab:! a4.& and Ps with
signs reversed to those shown in Fig. 11,3a. This produces no confusion
here, since conditions are always assumed to be relative to a rotating row,
being the most general case. However, any general qualitative statement
on relative blade outlet angles or swirl velocities such as "large," "small,"
"increasing," etc. in subsequent articles refer to the absolute magnitude
of these quantities without regard to sign. For a single row, the gas angles
are referred to simply as 0 for the inlet angle and a for the exit angle.
Inlet and outlet values have the suffixes 1 and . respectively.

Expressions for torque and work. The laws of motion give a mathe-
matical relation between the change of gas conditions in passing through
the blade row and the work output. Let a stream tube passing through
the blade row be defined as in Fig. H,3b. The blading is here assumed to
experience tangentially averaged conditions at inlet and outlet for any
given radial positions. For an elementary stream tube of the type illus-
trated, the blading can therefore be replaced by a hypothetical force field
or, as a more physical concept, by an infinite set of infinitely thin blades.
The equilibrium of pressure, internal forces, and external forces on any
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>1 Gas condition 4

Nozzles

i---Pitch s--- 4 .'

elt' =Inlet relative gas angle

=(A for a cascade)

gas outlet angle Gas condition 4.5

U4.5 blade speed '45= blade inlet angle

U, ~ ~ ~ 1 $ e/e= ais(' for a cascade)

+ I'of

V. %urvaure Blades

-a= blade outlet angle
=- (-a' for a Cascade)

-~=outlet swirl angle ~ / . ~=rltv
gas outlet angle

Gas condition 5 '(-a for a cascade)

U5 blade "ped

Fig. H,3&. Definition of interstage gas conditions by velocity triangles.

Blade region Outlet

Ig.let b A ele entrstra tubM.
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length of stream tube follows from Newton's second law of motion, lead-
ing to the following vector equation [4, pp. 73, 74]:

- fVpdv +f Fdv - 2f pVdv - fJ(n-V)pVdA (3-1)

where n is the inward-directed unit vector normal to the surface, dv and
dA are volume and surface elements respectively, F is the body force
per unit mass, and V is the velocity vector. The symbols p and p have
their usual meanings of pressure and density. Viscous force terms are
assumed negligible and have been omitted from Eq. 3-1. This equation is
valid for any complete surface, under steady or unsteady conditions,
whether portions of it are stream tube boundaries or not. Now, in the
case of turbomachinery, all the shaft movement is in a tangential direc-
tion and therefore the only work-producing forces are also in a tangential
direction. The shaft torque is given by the sum of the moments of the
body forces F about the axis. The following simplifications can now be
made.

1. All unsteady terms are neglected, i.e. partial derivatives with respect
to time are zero.

2. Terms involving pressure on the sides (ldr) of the stream tube cancel
out due to symmetry and those on the ends (rdodr) or top and bottom
(rdel) have no components about the axis.

3. In the case of a stream tube, the weight flow components (n . V)
normal to the surface will only exist at the two ends and, from con-
tinuity, they will be equal and opposite at these ends.

The right-hand side of Eq. 3-1 can then be written

f (n. V)pVdA = (pVVA), - (pV, VA).

= dQ(Ve, - Vo) (3-2)

where dQ is defined by the continuity equation

dQ = pV 1A = poV.oA°

Taking moments of the tangential force terms now left in Eq. 3-1,

Torque on a stream tube = f p(Fr)dv = dQ(Veor°- Vrtr) (3-3)

Now by the definition of work and from Eq. 2-5 and 2-6,

Work done on stream tube per unit time w X torque

Work done by stream tube per pound of gas fi o X torquedQ (-4

Work done per pound (Eq. 2-10) f (hl - hO).gJ (3-5)
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Using Eq. 3-3, 3-4, and 3-5,

gJ(h - h'.) =- w(V,.ro - V,1 rJ)

= U V $, - U. Voro

= UV0' - U.V,. (3-6)

Eq. 3-6 is thus the expression for the work per pound of gas, or total
enthalpy drop along any stream tube on passing through a blade row.
If Vo is negative, as shown in Fig. H,3a, the last two terms will be posi-
tive numbers and will both contribute to the enthalpy drop across the
rotor. As a special case, when no blading exists between o and i, Eq. 3-3
leads to the law of conservation of angular momentum:

If F, = 0 then
r, V0, = r. V. (3-7)

Eq. 3-6 can be written in a variety of different forms by using the
geometrical relationships between V., Vo, W., W,, and V described by
Fig. H,3a. An important expression for the change in relative stagnation
enthalpy hoe across the rotor can be developed as follows. The change in
relative stagnation enthalpy can be written (Eq. 2-11) as

h0 - ho" hi +2 -E - ho+2Wj] (3-8)

The squared velocity terms can be expanded into their components (Fig.
H,3a)

2gJ 2g.!
h h + V' + V"1 + (V' + U)' +

-=[h+ + (2gJ

[h. + V. + V2 + (V*. - U.)']2gJ ]

(h?,u- '(' VU+ (3-)

Substituting Eq. 3-6 in Eq. 3-9,

h - 2 0J  (3-10)

Since U is defined as ctr it is clear from Eq. 3-10 that h00 - h.00 will be
zero if the streamline leaves the rotor at the same radius at which it
enters it.
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Work coefficient. The work per pound of gas delivered to the rotating
blading has been shown (Eq. 3-6), for each streamline, to be represented

by the difference in the product of rw and V. before and after the blading.
Work achieved by large changes in swirl and low blade speed penalizes

aerodynamic performance. On the other hand, the same work achieved
by high blade speed and small changes in swirl causes increased rotational

stresses. A useful criterion of aerodynamic severity of design could there-
fore be defined as:

Work coefficient =

_ Work per pound of gas _ (h0 - hs)gJ (3-11)
I (blade speed) I ( J U2

The parameter 0, if expressed in consistent units, is dimensionless. It
represents the division of responsibility, as it were, between blade speed
and change of tangential velocity in forming their product which defines
the work per pound of gas. In comparing machipis it is necessary to
specify the radial station at which the quantities in Eq. 3-11 are meas-
ured. The practical expression for the work coefficient in the case of a
multistage machine with N stages would be

= ht,, - h° 2gJ (3-12)u2 N

where the suffix m indicates that values are measured at some mean value
of radius.

The difference between the design of stages with low and high values
of work coefficient 0 is illustrated in Fig. H,3c. The velocity triangles at
the nozzle and rotor outlets are here superposed to indicate the relation
between the change in swirl across the rotor, Ve,., - V.,, and the gas
angles. Blade velocities U4.1 and U5 will be equal (U = rw) if no radial
streamline movement takes place. The necessary gas deflections can be
seen to increase as 0 is increased, a factor which tends to make such
designs less efficient.

Fig. H,3d shows the trend of turbine efficiency at its design oper-
ating condition as a function of the work coefficient. A zone is shown
rather than a single line since this parameter is not the only criterion
of design severity, being also influenced by blade shapes and operating
Mach numbers (Art. 5, 6, and 7). Nevertheless, the work coefficient is
usually the largest single factor affecting design severity. Specific designs
have an efficiency at off-design operating points, shown by the chain-
dotted line in Fig. H,3d, which is lower than the locus of design points.
This decrease is caused chiefly by excessive gas incidences under these
conditions.

Expressions equivalent to the work coefficient 0 as defined in Eq.
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3-11 and 3-12 are often ei.countered. One such expression is the isentropic
velocity ratio vt., defined as

p velt blade speed
velocity equivalent of isentropic work

U (3-13)

2gJ(h4 - h1 )

There is an obvious algebraic relation between the work coefficient 0
(Eq. 3-11) and the isentropic velocity ratio vi. (Eq. 3-13). The expected

ve., - V.5 = ou--

V5  W4.5

Nozzles U U = U kBlades

Low value of work coefficient 4

H- vs Ve4 s - V.s = U

V W4.5

Nozzle) U = U
4, 5 =U'S lades

High value of work coefficient )

Fig. H,3c. Effect of work coefficient 0 on gas velocities and angles.

efficiency in Fig. H,3d has therefore been shown as a function of both
Y, ,, and 0.

Degree of reaction. By the term "reaction" the turbine designer refers
to the amount of acceleration that occurs across the moving blade row.
The degree of reaction can be defined formally as

D sum enthalpy drop across rotating bladessum of enthalpy drops across nozzles and blades (314)

( 444 )



H,31 FLUID MECHANICS OF A TURBINE STAGE

The reaction is zero by this definition if the velocity relative to the mov-
ing blades at inlet and outlet is constant and no change in relative stag-
nation enthalpy h" occurs (Eq. 3-8). The latter condition is fulfilled if no
radial streamline shifts occur (Eq. 3-9). In this case the outlet pressure is
slightly less than the inlet value due to pressure losses. Alternatively, if
the zero reaction condition is defined by zero pressure change across the

Design point performance achievable __ 4
with very god aerodynamic'

90 blade shapes

85
0--

75 - Low stress cdesign requiring thick
blades or high flow design

> 70 requiring low hub-tip radius
U/ / ratio

C

/ Performance of a particular,4- 60
4) design over its operating range

C55
-e 50 -- J

45

12.6 8.0 5.2 3.6 2.6 1.9 1.5

Height - average work coefficient i, - upper envelope
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Height - average isentropic velocity ratio vim

Fig. H,3d. Attainable efficiency aa a function of work coefficient *
or isentropic velocity ratio ,r..

rotor, there is u slight decrease in relative velocity, pressure losses being
just offset by gas deceleration. Definitions of reaction other than by Eq.
6-I are sometimes employed, since many are simpler for measurement or
computation. One such definition is

W - W2.. (3-15)V0 v1.. - V10. + w20 - WIS,

This definition is the same as that given by Eq. 3-14 if the axial velocities
are constant and the gas inlet tangential velocity to the nozzles is equal
to the stage outlet tangential velocity V.,.
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Velocity triangles for values of reaction D, equal to zero (known as
"impulse" condition) and unity, are shown in Fig. H,3e. As in Fig. H,3c
the triangles corresponding to the axial positions 4.5 and 5 have been
superposed and values of U at these two stations have been assumed
equal. This is usually nearly the case. The 100 per cent reaction case
applies strictly only when the stage is part of a multistage unit and the
stage outlet velocity Vs is equal to the stage inlet velocity V4 in magni-
tude and direction. In the case of a single stage, where V4 is axial as
shown, the reaction is somewhat smaller, though trends are similar.

... v(= V4 V4o....

for multistage) (single

U U4.5 US" '

Nozzles, Impulse (D 0) (Blades

Ve 4 -- Ve5-----
SV4 (single sae

V5 (-V4
fo r m u ltista g e ) aa s 4. 5

01 U-- U4.5 = Us-
100% reaction

Nozzles (D = 1) lades

Fig. H,3e. Velocity triangles for impulse and reaction stages having
the same blade speed and work.

Although it might be thought at first sight that 50 per cent reaction
or "symmetric" stages are the best design choice, in view of the fact that
nozzles and blade angles are then identical, other considerations also
apply. Impulse stages, for example, give less leaving swirl from the stage
and therefore eliminate the need for further swirl vanes when they form
the final stage. The temperature reached by impulse blades is also lower
due to the decreased relative stagnation temperature in accordance with
the following relation (Eq. 2-6, 2-7, and 2-11),

Tu= TO + W1. 11.6
T4.56=T. 2gJc, 2gJcp

This is mechanically advantageous.
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If the design is of the free vortex type (Art. 10) the degree of reaction
varies with the radius, being low at the hub and high at the tip. Constant
reaction designs necessitate nonuniform axial velocity and radial stream-
line shifts which detract from the accuracy of design predictions.

Characteristic diagram. The effect of blade-outlet-angle choice on
turbine work capacity may be examined by deriving a relation between
0, V,/U, and the gas outlet angles. This relationship is much simplified
and yet still provides the necessary insight if it is assumed that no radial
streamline movement takes place. This means that U (= wr) is constant
for any particular streamline. Eq. 3-6 thus becomes, using the nomen-
clature of Fig. H,3a,

gJ(h4 - hs) = U(Ve - Vs.) (3-17)

The peripheral velocities V. can now be expressed in terms of the axial
velocity V, and the gas angles,

V04, - V,,., tan a4.6 (3-18)

V. = W", + U

= V., tan as + U (3-19)

Substituting Eq. 3-18 and 3-19 into Eq. 3-17 and dividing by U,

1 - = - (tan a. -1 tan as) - 1 (3-20)

where the axial velocity ratio j, is defined by
V.= " (3-21)

and is usually in the neighborhood of unity. Eq. 3-20 indicates a linear
relationship between the work ho - ho and the axial velocity V. if U,
a4.5, and as are constant.

A relationship similar to Eq. 3-20 can be derived, using the inlet angles
134. and j6 instead of outlet angles a4.5 and as, as follows,

0 V0
'(4 - ho, -# V8-, (tan #4.- ptan 0) + 1 (3-22)

Eq. 3-20 and 3-22 are represented graphically in Fig. H,3f. This figure
must be considered as the locus of design points of various turbines rather
than the performance of given turbines over their operating range, since
at other than design points compressibility effects alter the axial velocity
ratio p. Also the gas outlet angles a4.5 and as do not remain constant over
a large range of operating conditions (see Art. 5).

Eq. 13-20 and 13-22 and Fig. H,3f put into numerical form the rela-
tionships indicated qualitatively by Fig. H,3c and H,3e. The latter figure
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0.2 0.4 0.6 0.8 1.0 1.2

Nondimensional axial velocity VZ4s/U

Fig. H,3f. Design work coefficient * as a function of velocity
coefficient V .,/U and pa angles.

illustrates that angles , and a4.s can be decreased only at the expense
of increases in as and s, for the same level of work, and the former figure
illustrates the increase in values of all the gas angles with increase in the
work coefficientc.

H,4. Relation between Blade Losses and Turbine fficiency.

Blade losses. Fluid friction gives rise to a drag on the blade surfaces
which, from the laws of motion, must be balanced by a momentum defect
(see, for instance, Eq. 3-1). This concept is brought out most clearly in
conventional pipe friction analysis. Blade frictional loss is usually defined
either in terms of stagnation pressure loss or in terms of the amount of
kinetic energy present at the exit from the row, compared with the maxi-
mum or ideal value at the prevailing outlet pressure. In view of the non-
uniformity of the outlet flow (existence of wakes), some circumferentially
averaged value must be taken. In the case of a moving blade row, the
stagnation pressure reduction due to absorption of energy by the blades

must obviously be excluded as a loss. It has been shown that, in axial flow
machines, no energy is added relative to the moving blades (Eq. 3-10).
Consequently, if all quantities are taken relative to the moving blades,
both stator and rotor losses can be analyzed from stationary cascade data.

Let the gas states and corresponding relative sagnation values at
inlet to, and outlet from, a blade row be represented on the enthalpy-
entropy diagram of Fig. H,4a as conditions i and o. After expansion to
the outlet pressure isentropically, the outlet relative velocity energy
would be represented by ho - ho and the loss in energy is he - d.
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/r

N4c/ .Condition o
Condition i

,n0

0.

hoo
CI

hois -

Entropy s
Fig. H,4a. Inlet conditions to, and outlet conditions from, a moving blade row.

The loss coefficient can therefore be defined as

-- hoe  h (4-1)h0 -hk

The alternative method of defining loss is in terms of the reduction in
stagnation pressure divided by outlet dynamic head, as follows:

00e 00p

Y p.0 - P. (4-2)

The symbol Y without a suffix will hereafter signify an average taken over
both blade height and blade width. The term Y, denotes a pitchwise
average at a specific value of r or blade height and Yo denotes a local
value for specific values of radius r and angle position 0. The terms X and
Y can be shown to be approximately equal numerically for, by the follow-
ing transformation, Eq. 4-2 gives

y = (PO0/Po) - (P.o0/p.)
(p! 0/po) - 1

( 449 )



H • AERODYNAMIC DESIGN OF AXIAL FLOW TURBINES

Using the isentropic expansion law,

(T.,T .) - t _

To(T, T/o)"(TO/T°)v- l - 1

(1 + T. TOO- )

(1 + 1To

First terms of binominal expansion can be used for the above powers
since temperature differences are generally small compared with temper-
ature levels. Eq. 4-3 thus becomes

(+ _ To .) ( T - T'.. 7' T )

y + T +-  To

+- f -I To
To - T. T100Too - To~ To (4-4)

Tj0 -0 To T.I.

Now, within the previous assumption that the ratio of stagnation tem-
perature to actual temperature is nearly unity, specific heat c, may be
taken as constant and thus Eq. 4-4 becomes (Eq. 4-1)

ho - how. T10

h0 - h. .Li

= ( \o7 (4-5)

In most turbojet applications the pressure ratio p°0 /po is less than 2 and
'-1

the term (p?0 /po) 't is therefore less than 1.2 (, y }). The loss coeffi-
cients Y and X are thus interchangeable for most engineering purposes.

Turbine efficiency. The relationship between the over-all efficiency
of a stage and the blade loss coefficients may now be derived. Gas state
conditions at the three axial stations 4, 4.5, and 5 are defined in Fig.
H,4b. In accordance with Eq. 2-12 the isentropic efficiency can be ex-
pressed as (h4 - h0)i[h0 - (ho,) 41. The suffixes s,.,, etc. indicate here, and
subsequently, the gas state corresponding to an isobar from condition 5
and a constant entropy line from condition 4, etc. (See Fig. H,4b.) The re-
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W (hO )4.5 CI
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Entropy s
Fig. H,4b. Changes of gas state in a turbine stage.

lationship between the isentropic work and actual work is now as follows,

h - hQ4= h2- h: + 6h' + Shb (4-6)

The enthalpy increments 5h bb are related to the nozzle and blade loss

increments Sh, Shb as follows,

II - T6.4

W,' = T5 - (T0 )4. = TO TO,_(4-7)

: i , , __ __ _

-T - (T6,) 4.5 T, (T6 .).()

equal we can write

go_ = (TBO,) 4 . o (Tg18.)4.1 _ (T51.)4.5
T,, (T5,) 4 6 r ,- T6_

Eq. 4-7 then reduces to

/Lo \ 8hb ' TO ! ,

=h _ T6 (4-8)

(451)



H • AERODYNAMIC DESIGN OF AXIAL FLOW TURBINES

Similar analysis leads to
a" (TOh.)t = . (4-9)

Combining Eq. 4-6, 4-8, and 4-9 into the expression for isentropic effi-
ciency (Eq. 2-12),

(T.)& a T6 (4-10)

T4., T,
hO - hO

Now, using the definitions of X., Xb (Eq. 4-1) and 0 (Eq. 3-11),

= (,. W, (4-11)
(V4.5 (T*,) 4.s /W6 T6- X T . ,+ - - 11

1+ VU1

1

( ) [sect a4 (T, .)4 X. + is see s as T Xb]I ( - V\ U T4.s T

The above expression for efficiency has been derived along similar lines
by Ainley [5]. By combining Eq. 4-12 and 3-20 this expression can also be
written purely in terms of gas angles and velocity coefficient V./U,

71= / 4° 1 T (4-13)
+ w (sec2 

a4. . + )I T6 (sec' a) b+ 1 V ,,,6 T 4. , i
tan a4., - j tan as U

V 4.5

The contributions of loss coefficients 4 and Xb, gas angles, and veloc-
ity ratio A to turbine inefficiency can be examined with the aid of Eq.
4-13. The temperature ratio terms are always in the neighborhood of
unity but tend to weight the blade loss at high outlet Mach numbers
and the nozzle loss when T4.5 is low, i.e. for low reaction stages (Eq.
3-14). A low velocity coefficient V,,.,/ U is seen to be desirable for a given
work coefficient 0, but this causes increases in the angles a.s and a5, thus
tending to restore the balance. The values of X. and Xb would also increase,
but they also depend greatly on blade shape, pitching, and height (Art.
5, 6, 7, and 8) and therefore questions concerning the choice of triangles
for optimum efficiency will be deferred until later (Art. 13).
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CHAPTER 2. EXPERIMENTAL DATA

ON PERFORMANCE

H,5. Effect of Profile Shape on Blade Performance.

Evaluation procedure. Blade profile loss may be considered as that
portion of the over-all loss which would be measured by tests on the
profile in the absence of any disturbance effects due to the presence of
walls at the blade extremities. The corresponding loss coefficient is desig-
nated as Y,. Stationary cascade tunnels are the most commonly used
tools for investigation of these losses (Sec. E) although certain difficulties
may arise in their interpretation. As indicated in Art. 4, the gas passing
through a stationary row of blades experiences some average loss in stag-
nation pressure caused by the blade wakes. If the blades are moving, a
relative stagnation pressure can still be defined in terms of the pressure
and relative velocity (Art. 2), but radial streamline movements cause
increases in this relative stagnation pressure (Eq. 3-10). The pressure loss
may then be defined as the difference between the ideal frictionless rela-
tive stagnation pressure at the exit and the actual value. It is clear that
large radial streamline shifts, such as take place in a centrifugal impeller,
cause the relative conditions to a rotating surface to be completely differ-
ent from conditions if the rotor is stationary [6]. Nevertheless, in the case
of axial flow machinery it is usual to apply data from stationary blade
tests to analyze rotating blade performance, the justification being that
energy addition relative to the rotating row is small.

The gas outlet angle from the blading is also an important variable.
Fig. H,3f and Eq. 3-20 show that the work capacity is closely related to
these angles, and in order to obtain gas velocities and directions as pre-
dicted for a given amount of work their accurate prediction is desirable.
In the case of turbines, the gas outlet angle is usually correlated with the
throat opening o, indicated in Fig. H,5a, rather than the true blade outlet
angle a' as defined by the tangent to the camber line at the outlet.

The following approximate relationship between blade geometry and
gas outlet angle is often used as a guidance rule.

la o1 _ co ' ° ( 5 -1 )

This relationship can be physically interpreted as an adjustment of stream
tube area at the exit to the same value as the blade throat area. The
actual gas outlet angle is conveniently recorded as a deviation angle a
from this standard condition.

5 = o-' 01- I(5-2)
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A full set of cascade data for given blade geometry should depict the
loss coefficient Y and the gas outlet angle a as a function of incidence i,
Mach number, and Reynolds number. However, unless variable density
cascade tunnels are employed, the two latter quantities vary together
over a test. Fortunately, in many tests the regions of high Mach numbers
cover Reynolds number ranges to which the blades are not sensitive.

Typical data on impulse blading (ft' -a') due to Todd [7] are indi-
cated in Fig. H,5b. Data on reaction blading or nozzles ( f = o) due to
Andrews and Schofield [8] are indicated in Fig. H,5c. These figures show

. .Pitch s

Actual thickness t
Critical thickness tcr

T 0

Region a

tcr -o+- s

Fig. H,5a. Relation between throat opening, thickness, and pitch.

the order of magnitude of operating incidence range, sensitivity to Mach
number, and values of deviation. Specific values of these quantities will
depend greatly on blade form and pitching. Losses at high Mach num-
bers are particularly sensitive to blade trailing edge form (Art. 6). Re-
action blades in general have a larger operating range of incidence than
impulse blades [9], but this generalization may be obscured in actual in-
stances by differences in operating Mach number, thickness, pitch, etc.

Relationship between profile losses and pressure distribution. Although
profile losses can be related to physical blade properties, such as blade
pitch, thickness, and throat opening, and to gas incidence, they can also
be related more fundamentally to the form of the velocity and pressure
distribution around the blade. This distribution controls the nature of
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the boundary layers which form the blade wake. Such distribution can be
obtained analytically (10,111, experimentally (12], or by analogue tech-
niques (11,18]. Typical distributions are shown in Fig. H,5d, showing the

Gas outlet angle contours0.8

Ilmpulse' blades'
cos-' o/s 53.5-

0.6

-

0
Loss coefficient0.8 -Y, (per cent) contours---

-- 0.6

0.4 ON, 0 9 12
0.2- __- 6

-15 -10 -5 0 +5 +10

Angle of incidence i, degrees
Fig. H,5b. Effects of relative inlet Mach number and

angle of incidence i - - .' 71.
effect of changes in blade patch. The surface pressure is plotted here as
the nondimensional coefficient,

-- PP. (5-3)

The pressure coefficient, C, is a function of the blade width at which the
pressure reading p is taken. The cascade data of Dunavant and Erwin [12]
may be cited as an example of the correlation between blade losses and
pressure distribution. The higher losses are generally associated with
highly negative values of C, on the suction surface, which lead to adverse
pressure gradients and boundary layer thickening over the trailing edge.
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Boundary layer calculations, based on previously determined pres-
sure distributions for blade cascades, have been carried out by Bchlichting
[141 and compared with experimentally observed losses. These are shown
in Fig. H,5e, indicating that losses can be predicted with reasonable
accuracy by these means. Other boundary layer calculation techniques
have been developed by Tetervin (151, Dowlen [16], MacGregor [17], and
others.

U)

- 64 -cos' o/s- . . .

0.o.

-62 - -- ----

U)
o 4

0  0.3

00
___ - - - 05

r " ue r0.90

0 0.9

1 Numbers on curves refer / 3
4 to outlet Mach number / o
C 0.06

0.04 0.3

U

U) 0.02 0.7
0

• 0

'- -60 -40 -20 0 +20 +40
0.. Air inlet angle 3i, degrees

Fig. H,5c. Cascade data on turbine nozzles [81.

Some experimental data giving the effect of blade geometry on profile
loss and deviation as a function of Reynolds and Mach numbers are
given below. The large variety of blading that is possible renders this
type of presentation somewhat approximate, but trends can certainly be
discerned, leading to better initial decisions and less development effort.

Effect of blade pitch and thickness. Since losses are related to surface
diffusion, it follows that there should be an optimum pitching for each
yalue of thickness-to-chord ratio t/c. Lower pitching than this optimum
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0.5
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----s/C too small
W s/c too large

0 40 60 80 100

Per cent blade width
Fig. H,fld. Variation of blade surface pressure distribution with

pitch-to-chord ratio 81c.

1.0 - _ _ _ _ _

-Experiment -Experiment

___ Theory --- Theory

S/ 0.5

s/c=05sc 0.75

S0.2 -. sc=05-
o~s/ 1.510--

2 Y=-600  / . y =-30*
a 1 - s/C =1. ~ 1 1 1
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Deflection tan 13-tan a Deflection tan 1--tan a
Fig. H,fle. Comparison between predicted and observed profile losses [141.
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drives the operating condition to an extreme where a/c - t/c and the
blades touch. On the other hand, higher pitching also leads to extremely
low suction surface pressure, since each blade must sustain a large pres-
sure difference across it to provide the same total force on the fluid. The
above two alternatives have been illustrated in Fig. H,5d. Comprehen-
sive data on these effects, at low Mach number, have been reported by

I i

s/C' -15  S/Cl= 0.94 Reaction blades P/a = 0

* - Airfoil blading; circular arc camber lines t/c = 10%C
- Conventional blading; parabolic camber lines

V t/c 15% to 30%'

4 0.12, ) o 2 I
0
U

o(A j t/ 31

- 008 t/c =25%
t/c =15% t/c 22%0 c

004"

s/c
Impulse blades P/a =-1

20 30 -40 -50 -60 -70 -80

Gas outlet angle a., degrees

Fig. 11,5f. Effect of blade pitch, thickness, and
gas angles on lose at low Mach numbers 19].

Reeman [18] and also by Ainley [9]. Ainley's summary is reproduced in
Fig. H,5f. These tests covered a range of pitch-to-chord ratio s/c and
turning angles (A - a), the lines shown being envelopes for optimum
incidence. The continuous lines refer to airfoil section blading with a
thickness-to-chord ratio t/c of 10 per cent. Broken lines refer to more
conventional turbine sections of greater thickness as indicated. The mini-
mum possible loss coefficient increases with gas outlet angle, but much
more rapidly in the case of impulse blades than reaction blades. Optimum
pitching also decreases with the gas outlet angle. Blade thickness is seen
to have a great influence on loss level but very little data is available
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regarding its effect on optimum pitching. Designers often employ a practi-
cal guidance rule that the passage opening should diminish smoothly from
inlet to throat as in Fig. H,5a. If the passage opening is uniform the
following critical relation applies,

This relationship is useful in the case of preliminary stress calculations
to arrive at some estimate of the maximum section area over which the
centrifugal and bending loads must be distributed (Art. 12).

H,6. Influence of Trailing Edge Form.

Trailing edge thickness effects. Finite trailing edge thickness may be
expected to give rise to pressure losses in much the same manner as a
sudden enlargement of a pipe through which fluid is flowing. If the veloc-
ity, pressure distribution, and gas direction just before the gas leaves the
blades are known, the gas condition far downstream where the flow is
uniform can be calculated from considerations of continuity, energy, and
momentum. The downstream unknown quantities are velocity, direction,
density, and pressure. In the two-dimensional case, momentum consider-
ations (Eq. 3-1) provide two relations. Continuity and conservation of
energy provide the remaining two conditions. The downstream conditions
can be found simply if the flow is assumed incompressible. Let suffix b
refer to conditions immediately at the blade outlet and suffix o refer to
(uniform) conditions far downstream (Fig. H,6a). Two-dimensional flow
is assumed here (r - co) and the pitchwise direction is taken as y. The
momentum relations (Eq. 3-1) applied normal to the pitch and along it are

f0 PWb cos abWb cos abdy + fo0 Pbdy = pW.(cos' a.)8 + p.8 (6-1)

f PWb COS abWb sin abdy = pW!(cos a. sin a.)8 (6-2)

Continuity of flow gives

Jo PWb COS abdy = pW.(cos a.)s (6-3)

Eq. 6-1, 6-2, and 6-3 can be solved to obtain W., a., and po. The outlet
gas angle is obtainable from Eq. 6-2 and 6-3 only and is given by

fW, sin ab COS abd (i
tan a fo (6-4)

Wb cos abd
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W 01b lmredi4tely. / .'"

oWnstrao ,wsr~

Fig. H,6&. Effect of traiding edge thickness on conditions far downstream.

Some reasonably accurate conclusions regarding the value of a. can be
reached if the assumption is made that Wb and ab are uniform except in
the blade trailing edge region where W is zero over a pitchwise distance
of e'. Eq. 6-4 then becomes

ta .= (tanl ab)( -)

Reference to Fig. H,Sa also gives

tan ab = /08 -- l), - 02

Combining Eq. 6-5 and 6-6, the outlet angle can be written,

tan a. K-- (67
8 S

he~ ~ =eito Cogle , defin by Eq. 5-2 thebeome

The relationship given by Eq. 6-8 is shown in Fig. H,6b. Deviations are
often greater than these values because the surface boundary layers pre-
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Ratio of trailing edge thickness to pitch E/s

Fig. H,6b. Calculated effect of trailing edge thicknes on outlet
deviation angle-incompreaible flow.

sent a blockage to the flow which increases the effective trailing edge
thickness of the blading.

Trailing edge thickness losses can be deduced in a manner similar to
the foregoing analysis, leading to the relation

= (P, + IpW!) - (Po + &pWo)
I W2

(cos 2 
ab) = (6-9)

An example of the use of Eq. 6-9 to determine loss increment due to
trailing edge thickness is shown in Fig. H,6c. The experimentally deter-
mined value of a known profile loss coefficient Y, can be related, through
Eq. 6-9, to an equivalent value of c/s. An increase in blade thickness can
be associated with a new value of profile loss coefficient.

More detailed analyses of trailing edge thickness effects have been
carried out by Reeman and Simonis [191, Goldstein [20], and Stewart [211.
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Trailing edge curvature. Some effects of suction surface form in the
region downstream of the throat on blade performance have been pub-
lished by Kraft [22], who carried out reaction tests on blade packs using
steam as the fluid. Similar data have been reported by Stephenson and
Naylor using air [23]. Curvature after the throat tended to decrease the
efficiency substantially at sonic or supersonic outlet velocities, though a

0.08

0.07 New profile loss Yp = 0.068---j

0.06
Increase in Yp = 0.016

Original profile loss Y. = 0.052

.0

U 0.04- --- 0033-
0

0.03 . . . . .. .

0.02

0.05 0.10 0.15 0.20 0.25 0.30

Equivalent thickness-pitch ratio E/s

Fig. H,6c. Calculated effect of trailing edge thickness on profile
loss-incompreuible flow.

slight increase (perhaps 1 per cent in efficiency) was observed at low sub-
sonic outlet velocities. Correlation of a variety of tests has been given by
Ainley [24, resulting in a loss relationship shown in Fig. H,6d, which
supports that of the other authors. The valuc of suction surface radius of
curvature (Fig. H,3a) is the mcan from throat to trailing edge in cases
where variations take place along the surface.

The disadvantage of suction surface trailing edge curvature at super-
sonic exit conditions is probably connected with the blade pressure dis-
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Fig. H,6d. Effect of trailing edge curvature on profile low. [841.
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Fig. H,6e. Effect of trailing edge curvature on deviation [241.
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tribution over the suction surface. Curvature of this surface after the
throat tends to shift the point of peak suction (maximum velocity) to a
position near the trailing edge. This may decrease losses for subsonic
outlet conditions by preserving a greater length of surface with a laminar
boundary layer. However, under supercritical conditions, more severe
shock-boundary-layer separation phenomena reverse this trend. If the
suction surface is to resemble in any manner an ideal convergent-divergent
supersonic expansion nozzle, the curvature should in fact be reversed;
the radius e (Fig. H,3a) should be negative for exit Mach numbers
greater than unity.

In view of the foregoing remarks it might be expected that the influ-
ence of the trailing edge curvature on the gas outlet angle is also strongly
dependent on the outlet Mach number. Deviation rules, based on avail-
able experimental data [23], have been suggested by Ainley [241 for low
subsonic and sonic exit velocities. These are shown in Fig. H,6e. At other
relative outlet Mach numbers some judicious interpolation is necessary.

H,7. Supereritical Blade Exit Conditions. If the exit static pres-
sure behind a blade row, stationary or rotating, is progressively reduced,
conditions will exist that are somewhat similar to those occurring in a
simple convergent-divergent nozzle [25, p. 229]. The implications of in-
definitely lowering the outlet pressure from a turbine stage can be con-
sidered first on a one-dimensional basis. In a multistage machine, where
velocity triangles are repeated for each stage and relative outlet velocities
are sonic or slightly supersonic, the immediate result of a decrease in
outlet static or total pressure is to increase W6 (Fig. H,3a) for the last
rotating row. If this row is choked, i.e. the Mach number relative to the
blades at their throats is unity, then the conditions upstream will be un-
affected, however much the outlet pressure is reduced. Even if the row is
not choked, the Mach number corresponding to Ws will probably be
nearly unity whereas that corresponding to W4.6 will be well in the sub-
sonic range. A very large increase in W5 is then obtained with a small in-
crease in W,.., and the referred flow relative to the blades, Q /0/aO,
will remain at a maximum, nearly constant figure. This results from
standard one-dimensional compressible flow relations in a duct [3, pp.
139, 140]. The effect is illustrated in Fig. H,7a, where broken lines refer
to the conditions for reduced outlet pressure. The slight change in gas
outlet angle will be explained later. The presence of compressibility thus
tends to isolate the earlier stages from the final stages (refer also to Art.
14). The highest proportion of change in work, corresponding to change in
outlet pressure, is taken up by increased velocities from the final rows.
Similar reasoning indicates that the referred flow through the turbine
Q Vi5/6 is set predominantly by the first nozzle row if the Mach num-
ber at outlet from this row is in the neighborhood of unity. If changes in

( 464 )



H,7 • SUPERCRITICAL BLADE EXIT CONDITIONS

value of opening o (Fig. H,5a) take place in the later rows, effects on the
earlier rows rapidly diminish. All these effects can be investigated quanti-
tatively by a fairly simple row-by-row analysis procedure at the mean
diameter [26,27,28]. This is often representative enough to analyze effec-
tively the results of restaggered blading or off-design operating conditions.

Returning to two-dimensional considerations, accommodation of a
blade row to progressively increasing pressure ratios has been investi-
gated by Hauser, Plohr, and Sonder 129,301. Effects are illustrated in Fig.
H,7b and H,7c. The shock waves and expansion conditions were observed
with schlieren and shadowgraph apparatus using straight cascades of

~/

U 4 .5

Standard outlet pressure \ - W
Reduced outlet pressure \ N

Us

Fig. H,7a. Effect of reduction in outlet pressure from
blading that is nearly choked.

blades. Fig. H,7b gives the regime where supercritical conditions are just
established. A supersonic expansion fan radiates from the pressure sur-
face of the trailing edge. In this case the expansion is followed by a shock,
shown by the letter "a" in Fig. H,7b, emanating from the suction surface.
Shocks "b" and "c" emanating from the wakes on the pressure and suc-
tion surfaces were also observed. Still lower outlet pressures produce a
flow regime shown in Fig. H,7c. Shocks "a" and "b" are now completely
outside the blade passage so that an uninterrupted expansion over the
suction surface from the throat to the trailing edge takes place. Typical
streamlines (broken lines) are illustrated in Fig. H,7b and H,7c and indi-
cate gas deflections in the axial direction which can be interpreted as a
deviation (Eq. 5-2).

If the pressure distribution over the blade surface is known as a
function of blade width, the area of this diagram will then represent the
tangential force on each blade. A representative plot is shown in Fig.
H,7d. For supercritical conditions an increased area and associated tan-
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gential force are produced by the decreased pressure on the suction sur-
face. This force can be related to the average increase in value of Wo. (Fig.
H,7a). It will be a maximum when the supersonic expansion fan after the
blade throat (Fig. H,7b and H,7c) first reaches the extremity of its ad-
jacent blade. This condition can be referred to as that of "limiting load-
ing." Turbine efficiency deteriorates rapidly at pressure ratios exceeding

- -Blade trailing edge

--- Suction

Streamlines
Expansion lines
Compression shocks

Fig. H,7b. Shock and streamline configuration for an
expansion ratio po/po of 0.42 [291.

_t.-'ng eg

Streamlines
Expansion lines

-- Compression shocks

Fig. H,7c. Shock and streamline conlfiguration for an
expansion ratio po/poo of 0.23 1291.

the limiting loading value [22,311, since no increase in work per pound of
gas is possible.

For design purposes it is necessary to represent the two-dimensional
regime shown in Fig. H,7b and H,7c by equivalent one-dimensional values
which represent averages felt by blade rows or components downstream.
The aforementioned authors [29,80] have carried out a calculation pro-
cedure, which checks very well with experiment even for blades with sur-
face curvature downstream of the throat, as follows:
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1. Until W#,, reaches limiting loading value, it is assumed that We. and
lIV, increase together in an isentropic manner, so that poW,o is main-
tained constant.

2. When W 0 has reached limiting loading value, it is assumed that it
remains constant but p. and W,. change, still maintaining their product
constant. This is a nonisentropic process.

This method of calculation requires advance knowledge of the break-
point between assumptions 1 and 2, which can be obtained by plotting
the flow using the method of characteristics (VI,G) as shown in Fig.
H,7e. A relation between the blade outlet angle and the outlet tangential

1.0

Pressure surface

Suction surface,

4- 0.5.' ..

L. Fully expanded (Fig. H, 7c) >-"'
i Shock region -

a. Semi-expanded (Fig. H, 7b)

0 ,

0 20 40 60 80 00

Inlet Per cent blade width Outlet
Fig. H,7d. Variation of blade surface pressure distribution with outlet pressure.

velocity, deduced in this manner for straight-backed blades, is reproduced
in Fig. H,7f. Velocities are given nondimensionally as (W,/W.), where
suffix., denotes the value attained if the gas is brought isentropically
to the sonic condition.

A comparison, made by Hauser, Plohr, and Sonder [29] between theo-
retical and observed outlet conditions, averaged in a pitchwise direction,
for the cascade in question is reproduced in Fig. H,7g and H,7h. The
ratio (W/W.).i. may be regarded as equivalent to the pressure ratio
po/p,0 , being related to it as follows [291.

= y {+11 [I - :]) (7-1)

The term p 0 relates to conditions relative to the rotating blades. Also

shown by broken lines on Fig. H,7g and H,7h are estimates of outlet
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Fig. H,7e. Characteristic diagram and static pressure distribution
under conditions of limiting loading (801.

oZ 1.4 N
0 

.64 1.2-

4-
,, 0.8

0.6 - - - -

0

0.4-

0 - - ---80 -70 -60 -50 -40 -30 -20 -10 3
Blade outlet angle a', degrees

Fig. H,7f. Tangential outlet velocity under limiting loading conditions
calculated by method of characteristics [801.

velocities and angles obtained by analytical procedures (1) and (2) above.
The sharp discontinuity in the curve of tangential velocity W 0o (Fig.
H,7g) is explained by the limiting loading condition, verifying that no
further change in outlet swirl is possible after point A has been reached.
These figures also show that it was not possible to obtain axial Mach
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numbers higher than a certain value corresponding to (Wa/W.) - 1.15,
however much the outlet pressure was reduced. This value would theo-
retically be unity for turbines or cascades with a wall configuration at
the outlet which precluded increase in the flow area normal to the axial
direction.

H,8. Secondary Flow Losse. Secondary flow losses, or contribu-
tions to loss in turbine efficiency caused by secondary flow, are usually of
about the same magnitude as profile losses. The flow takes the form of
circulatory or eddy flow between adjacent blades. This pattern may be
regarded as composed of several distinguishable effects indicated below.

Inlet velocity profile

0 Secondary flow at outlet

Fig. H,Sa. Circumferential secondary flow mechanism.

Tangential momentum transport (end effects). This is the predominant
effect. It can be described physically, although only qualitatively, as fol-
lows. The pressure differential between the pressure and suction surfaces
of adjacent blades in the central portion of the annulus is in equilibrium
with the centrifugal force field caused by streamline curvature as the gas
turns through the blade deflection angle. At the blade ends, where gas
velocities are very small, this pressure differential causes a flow of gas from
pressure to suction surfaces. The effect is illustrated by Fig. H,8a. A
measured three-dimensional loss pattern taken from experiments by
Rohlik, Kofskey, Allen, and Herzig 132] is shown in Fig. H,8b.

The generation of tangential secondary flow may also be explained
[33] by following the pitchwise vortex filaments which result from a
heightwise axial velocity profile. Fig. H,8c illustrates a vortex filament
A A, traveling successively to positions A 2A2, AlAs, etc., finally reach-
ing position A6As. The portion adjacent to the suction (convex) surface is
washed further downstream than the portion adjacent to the pressure
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(concave) surface, because there it moves on a small radius and also be-
cause fluid velocities on the suction surfaces are greater. In its final po-
sition the vortex filaments have components in the fluid direction, which
generate the flow patterns shown in Fig. H,8a.

Passage width

2.0 0

Numbers refer to local
values of loss coefficient

I.-

- -I

*. Outlet Mach number

00-

-~04

2 4 6 8

Circumferential distance, degrees
Fig. H,8b. Three-dimensional loss contours for a stationary blade.

Subsonic outlet Mach number r401.

Hawthorne [341 has derived an expression for the change in vorticity
component along a streamline in the absence of dissipation and in an
incompressible medium as

( )- (r), = 2 ° V(- )sinT x(8-1)

where x is the angle between the normal to the plane of constant total ;

pressure and the principal normal to a streamline, and i) is the angular
(471)
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direction of the streamline. The regions immediately adjacent to the blade
surfaces must be excluded from this analysis by reason of predominant
viscosity effects. For straight cascades with a heightwise velocity gradi-
ent (dWi/dz) at the entry, Eq. 8-1 leads to the expression

o - r - 2 - a) (8-2)

This equation was first developed independently by Squire and Winter

Evaluation of the losses associated with tangential secondary flow
involves the solution of an induced velocity field due to a distributed

Vortex filament at ulet

Fig. H,8e. Prores of a vortex filament through a blade paiage.

vorticity, requiring, in general, numerical methods [36]. Quantitative
prediction of the value of induced losses is also hampered by the approxi-
mate nature of Eq. 8-2 for large secondary flows, an unknown value of
dW1/dx in actual turbine blading, and by complicated wall boundary
layers produced by this type of flow. Even if the heightwise velocity
gradient is zero at the entrance to a blade row, a gradient builds up on
the annulus walls inside the row 136]. Finally, the energy associated with
secondary flow appears in the next row in a fluctuating manner with an
attendant increase in effective Reynolds numbers, which effect may, in
fact, decrease the losses (Art. 9). An experimental approach is therefore
necessary.

Experimental data on the effect of blade height on the local loss
coefficient Y,, due to New [37], are reproduced in Fig. H,8d. A significant
feature of this pattern is the comparative freedom of the center portions~
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of the blade from end wall interference at the higher aspect ratios. This
suggests that the secondary loss might be inversely proportional to the
blade height. Let a secondary loss coefficient be defined as

Y. - Y- Y, (8-3)

where Y. is the loss coefficient obtained from separate two-dimensional
tests and Y is the mean loss over the whole blade height for the aspect
ratio in question. The suggested relationship between Y. and blade height
is thus

1
Y.(8-4)

The validity of Eq. 8-4 can be verified quantitatively by plotting the

' II

-hlc 1.5--- I=.
_ I -.

S Note: for h/c = 1.5 Y at mid-heiqht is not equol to Y,
0 - -I I I

- 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

Blade height position

Fig. H,8d. Effect of aspect ratio on secondary flow loss pattern [17].

aforementioned data due to New [37] and also data due to Scholz [88] in
the form of Y./ Y, versus aspect ratio h/c as in Fig. H,8e. Good correlation
is obtained if Y, in Eq. 8-3 is understood to refer to the true two-dimen-
sional (large height) configuration and not the value of Y, at midheight
which, for low values of h/c, is considerably depressed (Fig. H,8d) due to
merging of the secondary flow zones.

The effects of varying gas conditions and geometry other than blade
height have been investigated by Ainley and Mathieson [24] and Carter
and Cohen [391. (Refer to E,3.) Ainley has postulated [24] that in an
actual turbine the value of Y. is related most closely to the mean acceler-
ation of gas in passing through the row, since this controls the build-up
of the wall boundary layers which constitute the term dWI/dx in Eq. 8-2.
The mean acceleration can be expressed as a ratio A.u,/A.., of the two
annulus areas. As a result of Carter and Cohen's analytical work, he has
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03.0.-
2 0 New [37]

x Scholz [381 /
r 2.0--

0. /
4- 1.5

- /0

1.0K

0 0.5

0( 0.2 0.4 0.6 0.8 1.0

Reciprocal aspect ratio 1/(h/c)
Fig. H,8e. Effect of aspect ratio on secondary low. coefficient 187,881.

also suggested that the values of Y. should be related by their associated
drag and lift coefficients as follows:

.(8-5)

where CD., CL are defined by the following equations:

CL = 28(tan 0 - tan a) cos a. (8-6)

CD. = cos cx- (8-7)

tan # + tan ac. = tan-' 2 (8-8)

A practical correlation was therefore achieved by plotting the parame-
ter (CDJ .C)(8/c) against an acceleration and blade height parameter
(A., 1/A..,) 2/(1 + Xh). This gives recognition to the part played by

acceleration of the flow in maintaining small and stable boundary layers
on the annulus walls. The term Xb(- rb/r) is introduced to account
for the increased values of work coefficient . at the blade hub, due to
reduced values of U which tend to produce increased losses in these
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regions (Fig. H,3d). The opposing contributions of effects illustrated in
Fig. H,3d (hub loading) and H,8e (merging of secondary flow vortices)
were thus not separated out. Correlation data is reproduced in Fig. H,8f.

Radial flow movements. Other flow movements in the form of shed
vorticity or eddying motion have been observed. Although little numeri-
cal data on corresponding losses are available, their role in modifying
boundary layer phenomena on the blade surfaces and in causing radial
interchange of mass is of interest and importance.

A radial flow movement inside the blade wakes and in thickened pro-
file boundary layers has been observed by Allen, Kofskey, and Chamness

U

S0.03U.
, Rotor rows

U 0 Nozzle rows
X Cascade tests

0.02)

0

I .
S0.01 ... -----

0 rn

0 _ rh

0 0-

u 0 0.1 0.2 0.3 0.4 0.5
WAcceleration and blade height parameter

(A.nn,o/ Ann, )2/(1 + Nh)

Fig. H,8f. Correlation of secondary loss data due to Ainley [241.

[401 at high outlet Mach numbers. This is attributable to the change in
(tangential) velocity in the boundary region. Since the radial pressure
gradient adjusts itself to the general tangential velocity pattern outside
the boundary layer, adjustment inside the boundary layers must take
place by radial flow. This flow can be expected to be very much accentu-
ated by the presence of a thickened boundary layer caused by inefficient
blades. The transport of stagnant air from the tip to hub regions was in
fact found to be greatly in evidence when supereritical pressure ratios
existed across the blading. However, radial flows have also been observed
at intermediate and low gas speeds [41]. Fig. H,8b and H,8g present these
comparisons, identical stationary blading being used for each test.

In the case of rotating blading, the radial mass shift in the boundary
layer is directed outward over the exit portions of the blade surface where
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the tangential velocity of the blade is greater than the tangential velocity
of the fluid; otherwise the flow is directed inward as for stationary blades.

Shed circulation. Blades operate with varying circulation up their
height even if the axial velocity is uniform with height, unless free vortex
designs are used (Art. 10). There is a circulatory flow pattern at the exit

Passage width

2.0-- [ 20

Numbers refer to local

values of loss coefficient
Outlet Mach nube

O~1 1. .46

InI

03

.61

4)

.2
0

150.4  r

0 2 3 6

Circumferential distance, degrees

Fig. H,Sg. Three-dimenaional los contours for a stationary blade.
Supersonic outlet Mach number 1401.

due to the shedding of this circulation. This combines with the tangential
secondary flow pattern to produce some net effect. Fig. H,8h illustrates
combined flows calculated and experimentally verified by Ehrich 136].

Reduced axial velocities in the hub and tip regions at the outlet from
a row reduce or even reverse the turning, and hence reduce the circu-
lation, for these regions in the following row. This can be seen by ex-
amining typical velocity triangles (Fig. H,3a). Exactly similar effects are
imposed on stationary nozzles by the relative motion of preceding blades

( 476



H,8 SECONDARY FLOW LOSSES
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Fig. H,8h. Secondary flow pattern resulting from end effects combined with
varying blade circulation 1861.
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(for compressors, the blades suffer increased incidence at their extremi-
ties, giving the opposite effect). Some shed circulation can therefore be
expected even when the blading is designed for co'stant circulation.

H,9. Other Factors Influencing Performance.

Windage losses. Rotating disks and shafts give rise to a power loss
associated with air friction. Experimental data have been summarized by
Stodola (I, p. 197), also by Theodorsen and Regier [4*]. The drag coeffi-
cients are not strong functions of Reynolds numbers for turbulent flow.
The latter authors give the following experimental data:

Disks cd = 0.053(Red) - l (-1)

Shafts 1 -0.6 + 4.07 log (Re,. -/C) (9-2)

where cd or Cb is the local value of the drag force per unit wetted area
divided by JpU2 , p is the gas density, and U is the speed of the disk or
shaft at the point in question. The Reynolds number Re is given as

Re.h or Red = r  (9-3)

where p, t, r, and u are the local values of the density, the angular
velocity, the radius, and the coefficient of viscosity. Eq. 9-1 and 9-2 can
be integrated to give the drag horsepower. For a disk (Eq. 9-1) the
expression is

hp = 0.146 (Red),- 1 Plj (9-4)550j

where all values are now taken at the disk rim, p being in slugs/ft',
r,, the rim radius, in ft, and o in sec - .

Losses due to unsteady flow. The mechanism of loss associated with
unsteady flow can be attributed [43] to the shedding of vortices from each
blade as the inlet conditions vary with time. These effects might there-
fore be expected to diminish as a blade row is separated from the disturb-
ing influence of the wakes from the row immediately upstream. Data
published by Wu [44] are shown in Fig. H,9a, where over-all turbine
efficiency is plotted as a function of axial clearance between blade rows.
For normal loading about 0.15 inches appeared to be the critical distance,
which is outside the range of usual designs. Unsteady effects are further
considered in Sec. K.

Cooling air flows. Air is sometimes deliberately introduced into the
stream after it has cooled certain highly stressed portions. Such air is
shown in Fig. H,9b as introduced into the tips of hollow first-stage nozzles
pnd discharged again in the hub region. Effects on performance depend
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on the method of air ejection into the main stream. It is reasonable to
assume a loss of work equivalent to the cooling air mass flow multiplied
by the enthalpy drop associated with the lost pressure. This ignores
secondary disturbances in the main stream caused by such ejection, and,

0.8

p /p_ 2.31
C. 0.78--- " -175....

3,0W, 0.76

o . 3.401
>W 0.74 .................

00 0.72

0.700 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Stator-rotor axial clearance, in.

Fig. H,9a. Turbine peak efficiency as a function of axial clearance 1441.

--- Coolant flows
....--- Leakage flows

Inlet 
Outlet

Fig. H,9h. Leakage and cooling flows.

of course, loss of heat into the blade, which must be investigated sepa-
rately [45,46,47,481.

Leaving losses. It is generally the purpose of the turbine designer
so to define the turbine component that the engine has maximum over-
all efficiency. It is often possible to improve the turbine efficiency alone
at the expense of high leaving Math numbers or exit swirl which penalizes
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the performance of components downstream. Some cognizance of this
effect must be taken, such as by including the loss due to a standard
diffuser or exhaust nozzle element with which the turbine is to be used.

Tip leakage and scrubbing effects. These effects have been discussed
by Carter (49]. They are illustrated schematically in Fig. H,9c. The
effects have also been observed by Herzig, Hanson, and Costello [60] with
smoke-tracing techniques. The relative motion of blades with respect to
walls causes a roll-up of gas which, for a turbine, reinforces the secondary

Mid-blade height

p S Additional scrubbing vortex

Compressor " .. . - Tip leakage flow

Relative motion of wall

P = pressure surface Blades
S = suction surface

Mid-blade height

_% x Scrubbing vortex unites

P- "  p S _ r ,- -: , with secondary flow vortex
Turbine -,vo'--- Tip leakage flow

Relative motion of wall

Fig. H,9c. Flows caused by scrubbing action and tip clearance 149].

flow vortex but opposes the leakage flow over blade tips. In the case of
compressor blading, both leakage flow and scrubbing effects oppose the
secondary flow. Analytical evaluation of associated drops in turbine effi-
ciency is inherently somewhat intractable due to viscous effects. Conse-
quently turbine designers usually carry out tests to estimate leakage
effects for particular designs. For unshrouded blades the per cent effi-
ciency has been observed to drop between one and two points for an
average leakage area per row which is one per cent of the annulus area.
The figure for shrouded blading depends on the number of seals employed.

Reynolds number effects. It is not strictly possible to generalize on
Reynolds number effects except for geometrically similar blade configu-
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rations. In addition, these effects, though valid for the turbulence level
at which the tests were undertaken, may be modified under operating
conditions by nonuniformity of pressure and temperature at the com-
bustor exit and by the wakes from previous blade rows and secondary
flow patterns. Even for a given turbine, Reynolds number data obtained
by complete scaling or density changes must be used with caution to
predict effects of changing the blade chords only (at constant values of
s/c) and not blade height, or vice versa, since this would presume that
neither the profile nor secondary losses are dependent on the unchanged
dimension.

0.25 C
CC

2 0.20 ___- 803 Cascade tests [7]
-_ Impulse blades

oO0.15 1 I -
LoSS ... _-- Altitude engine tests [531 u

S. q.eferred to = 89% at
0 0.10 - -- Re=2X10'-- 90.y
.) 8 Model tests [9]

Reaction blades0.05 .. . .
_. ~'- . __.. _ -

C
0..

104  2 x 104 5 X 104  Jos  2 x 10 5  5X105  106 I"

Reynolds number Rec based on outlet conditions and blade chord
Fig. H,9d. Effect of Reynolds number on performance of turbine blading.

In practice certain trends are nevertheless found to hold for a wide
variety of turbine blades. Typical cascade data on Reynolds number
effects [7] for impulse blades are indicated by the solid line in Fig. H,9d,
where the profile loss coefficient is expressed as a function of the Reynolds
number based on the blade chord and outlet conditions.

Re.= pVo (9-5)
Ao

Cascade tests by Bridle (51] and rotating tests by Ainley [9] indicate that
reaction blading is less sensitive to Reynolds number effects than impulse
blading. Typical results are indicated by the dotted line in Fig. H,9d.
These show a critical blade Reynolds number in the region of 2 X 10'.

Several authors [26,52] have found correlations by using a Reynolds
number dependence of the form

Loss - (Re)-1 (9-6)
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This relationship is shown by the dot-dash line on Fig. H,9d for a basic
value of Y, equal to 10 per cent at Reynolds number Re. of 10'. Altitude
engine tests (68], indicated by the broken line on Fig. H,9d, show similar
trends. Correlation of a number of compressor and turbine Reynolds
number tests has been undertaken by Davis, Kottas, and Moody (54]
using a machine Reynolds number defined as

Re, = pU,(2r) (9-7)

This Reynolds number is at least an order of magnitude higher than that
defined by Eq. 9-5. Average figures for the drop in efficiency from that at
ReU = 107, taken from the above data, are given in Table H,9. When
allowance is made for the difference between Re and Reu, these data
compare reasonably well with trends shown in Fig. H,9d.

Table H,9.

Reynolds numbers
Total

percentage points

iReu (Eq. 9-6) Re. (Eq. 9-5) efficiency drop
(Approx.)

l07 0.5 X 10' 0
106 0.5 X 106 5
106 0.5 X 10' 15
104 0.5 X 10' 35

CHAPTER 3. THREE-DIMENSIONAL EFFECTS

H,1O. Radial Equilibrium. The term "radial equilibrium" is em-
ployed by the turbine designer with reference to those fluid flow equa-
tions which apply in a radial direction. For frictionless steady flow the
equation of motion in direction r can be shown to be [4, p. 94, Ex. 8 and 9],

F, - = V, V' + 1 _V, V, V (10-1)p r r r +0 o r

where V,, Ve, and V, represent velocity components in the radial, cir-
cumferential and axial directions, and F, is the radial body force per unit
mass of fluict. At an inter-row position the body force F, will be zero;
also, the assumption of axial symmetry implies that OV,/O0 will be zero.
If V, is small (generally true for axial flow machines) the term Va V,/Or
can be neglected compared to V,0V,/Or. These assumptions introduced
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in Eq. 10-1 lead to

_2 = V; - V, __, (10-2)

The third term in Eq. 10-2 may be expressed in a more significant manner
in terms of r., the radius of curvature of the "meridional streamlines" or
projections in the "meridian plane," defined by 0 = const. The following
equation results,

Lp _ V2 VI (10-3)
par r r.

The approximate equivalence of the third terms in Eq. 10-2 and 10-3
can be deduced by expanding as follows:

I' lV, a . dr\
,,, Li- + 61 V. d

=v, W_ (10-4)

For axial flow machines, a V,/Oz and dr/dz will be small. If their product
is neglected compared with d 2r/Oz', Eq. 10-4 can be written

V, d r
az 'dz2

C-_ v(10-5)

This establishes Eq. 10-3 from Eq. 10-2.
A physical interpretation of Eq. 10-3 is that the radial pressure gradi-

ent is caused by two easily conceived centrifugal force fields. The first is
caused by conventional rotational motion about the axis of the machine
and the second arises when the meridional streamlines are moving along
curved paths. The term "simple radial equilibrium" can be applied to
cases where the second term on the right-hand side of Eq. 10-3 is absent
or neglected and the term "modified radial equilibrium" to cases where
both terms are taken into account. If conditions sufficiently far down-
stream of a blade row are considered and the annulus is of a fixed cylin-
drical shape, the terms involving V, vanish and simple radial equilibrium
then applies exactly.

The use of both simple and modified radial equilibrium to determine
inter-row gas conditions has been thoroughly explored by Wu [55]. If the
circumferential velocity V. is prescribed either graphically or analytically,
as in the "design" case, for all values of radius r at a particular inter-row
station, Eq. 10-3 can be used, ignoring the terms V,/r. initially, to con-
nect the pressure at two adjacent radial positions. This can then be used
to determine the required value of V, at the second radial position if the
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first is known. In this way consistent values of V, for all radii are found.
This is essentially a numerical integration process. The choice of V, at
the first radial position, e.g. the hub, is arbitrary and can be made to
produce a set of V. values which integrate out to some desired mass flow.
If this process is performed at more than one inter-row position, the
initial (hub) value of V, must be chosen so that the total mass flow is
the same at all inter-row positions. The inter-row gas states at all radii
having been determined using simple radial equilibrium, it is then possi-
ble to plot streamline paths and determine some approximation to the
third term, V./r,, in Eq. 10-3, which can then be used to further refine
the calculations. "Performance" solutions proceed in a similar manner by
prescribing gas angles in place of tangential velocities.

The more general solution of axially symmetric flow conditions, which
will involve solution of Eq. 10-1, requires more involved though similar
techniques. Such solutions are considered in Art. 11. The advent of high
speed computing machines has obviated much of the need for closed
analytical solutions which are tractable to hand calculation.

Free vortex design. Turbine designers often proceed on the basis that
some mean stagnation temperature TO applies and the variation of tan-
gential velocity Vo with radius r is prescribed so that their product is
constant at inter-row positions, i.e.

Vor = const (10-6)

This condition is known as a "free vortex" pattern, since the relation
given in Eq. 10-6 applies to a two-dimensional natural vortex 14, p. 1751.
This type of flow pattern will be seen to produce constant work at all
radii if Eq. 3-6 and 10-6 are combined. The circulation around each blade
will also be constant, resulting in the absence of shed vorticity. This
results from the fact that V. varies inversely with r whereas blade pitch s
varies directly with r and their product is therefore constant. Hence, for
each blade, the circulation

r = (Vol - Veo)s

= (rVoi - rVo) a const (10-7)
r

It will now be proved directly that Eq. 10-6 leads to constant axial
velocity if the following assumptions are made:

1. Stagnation temperature TO is constant with radius.
2. The term VI/r, is neglected in Eq. 10-3.
3. Stagnation pressure p0 is constant at all radii.

Condition 2 will be true if there are no pronounced streamline shifts.
This is consistent with a flow regime established where V. (or, better,
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PV,) is constant at all radii for all inter-row stations. Also, conditions 2
and 3 lead to constant entropy [2, pp. 104, 105].

The proof of constant V, then proceeds as follows. Simple radial equi-
librium (Eq. 10-3), neglecting meridional streamline curvature, leads to

g d V(10-8)
P dr-  r

The relation between temperature and stagnation temperature is (Eq.
2-3, 2-6, and 2-7)

CPT + _ + = - const (10-9)2gJ 2g.!

Constant stagnation pressure p0 and temperature TO [8, p. 1041 for a
perfect gas leads to

d c,dT RtI dp c, dT1 + 1 dpO = 0  (10-10)
dr T d pJ dr Tr--o -d "r j -dr

where s is the entropy of the gas at radius r. Variables p and T can be
eliminated from the above three equations as follows. Differentiating Eq.
10-9 for r,

cdT+V, dV,+VdVe dT0

,-pLT + d -7 + L.-- = C,-- = 0 (10-11)
dr g r gJ dr dr

The term dp/dr can be eliminated from Eq. 10-8 and 10-10, which yields

t p V2 1 dT

P gJ r = -

or, if the perfect gas law p/p = IT is assumed,

r2 dT (10-12)

rgJ -Pdr

The temperature differential dT/dr can now be eliminated by combining
Eq. 10-11 and 10-12, which yields

S1d(V) =- V r (Ver) (10-13)

The introduction of Eq. 10-6 into Eq. 10-13 then leads to d(V,)/dr
0, i.e. constant V. with r.

Apart from nonuniformity in stagnation temperature and pressure,
TO and p', compressibility of the gas introduces errors into the calcu-
lations leading to Eq. 10-13 by violating the validity of assumption 2.
For incompressible flow, with zero flare in the annulus area and constant
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V., meridional streamlines are all parallel to each other and to the axis.
For compressible flow, the radial position of a streamline, as a function
of axial distance z, is that value of r for which

J -b" pV,2rrdr = const (10-14)

The streamline radial position, r, is large where p is low and vice versa.
This results in a fluctuating streamline path shown in Fig. H,10a. A strict
solution, even of the free vortex flow pattern (rV, = const), entropy and
total temperature being also constant with radius, then involves modi-
fied radial equilibrium (Eq. 10-3), using values of r from streamline plots

Meridional streamlines

Incompressible
.....- Compressible

Inlet
Station 4

1st nozzle Outlet
1st blade Station 5

2nd nozzle

2nd blade

Fig. H,10a. Distortion of meridional streamlines due to density
changes for a free vortex design.

such as in Fig. H,10a. However, it is found in practice that, for free vortex
designs, blade angles arrived at by the more rigorous process usually differ
by no more than a degree or two from the value obtained by assuming
V, to be constant.

Free vortex designs are often further simplified by calculating V. on
the assumption that pV, or the "specific mass flow" is constant with the
radius. This technique leads to a direct determination of V. at all radii
from the known flow required and eliminates a trial-and-error technique
to determine the level of V, which will match the total required flow.
Here again the justification is that of sufficient accuracy, bearing in mind
the other larger disturbing influences, such as secondary flow patterns,
unsteady effects, and radial distribution of stagnation pressure and tem-
perature. Typical velocity triangles and blades for a single-stage free
vortex (Eq. 10-6) design, with constant specific mass flow pV,, are shown
in Fig. H,10b.
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Forced vortex designs. In the case of this type of design the free vortex
condition (Eq. 10-6) does not apply. A disadvantage of free vortex de-
sign is the high degree of twist in the rotating blades to accommodate the
large changes in inlet and outlet angles (Fig. H,10b). Other variations of
V. with r can give rise to a more uniform nozzle or blade section. The

10'
Hub 15" dia a, 4

U 8 889

UT 889 Mean 175 dia
15.60 U 1035
'A

All velocities in ft/sec vc '3o fe v

N-U-1035 2 c

0

TiU2" ioulU7218

constant specific mass flow.

design for a blade section that is constant with radius has been investi-

gated by Slivka and Silvern [56J. Once the gas direction on each side of
the blade is set, the actual velocities fix themselves to satisfy radial equi-
librium and therefore the variation of work with radius cannot be set in
an independent manner. A typical radial variation of work is shown in
Fig. H,l.c.
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A variety of nozzle and blade flow angles can be designed into a forced
vortex turbine, still maintaining constant or any desired variation of work
with radius. This is achieved by choosing a desired V. distribution in
front of the moving blade, the distribution behind the blade then being
fixed by virtue of Eq. 3-6. Some iteration may be required for desired
accuracy, since the radial streamline positions at the exit from a blade
row must be calculated from Eq. 10-8 (or, better, Eq. 10-3) and 10-14, but
the Vo distribution required for the solution of Eq. 10-8 depends (Eq.
3-6) on these positions.

Axial velocities that are dictated by radial equilibrium equations im-
pose a severe limitation on the range over which Vp can be chosen for a

E Mean relative gas inlet angle 600

- .

0 /n

0.8
0.8 0.9 1.0 1.! 1.2

Radius ratio r/rm

Fig. H,10c. Variation of work per lb of gas with blade height for
constant section rotor blades [561.

given design. A study has been undertaken by Pinnes [571 of the conse-
quences of a relationship of V. with r of the general form

V. = ar" (10-15)

where a is a constant of proportionality. Total temperature and pressure
were assumed uniform with radius. When n = -1, Eq. 10-15 reduces to
the free vortex condition (Eq. 10-6) which leads, under idealized condi-
tions, to constant axial velocity (Eq. 10-8, 10-9, 10-10, 10-11, 10-12, and
10-13). However, Eq. 10-13 serves to indicate the effect of using a more
generalized distribution of V. with radius such as in Eq. 10-15. The con-
tribution of the term d/dr(Vor) in Eq. 10-13 is positive if n > -1 and
negative if n < -1. Consequently V, decreases more with r as n in-
creases and vice versa. A cut-off point is therefore reached, in the former
case with increasing r and in the latter case with decreasing r, at which
V! becomes negative, leading to no real solution. Before this point is
reached, designs will be impracticable due to excessive gas angles. In-
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crease in the value of n at the nozzle exit may thus increase the enthalpy
drop at the blade tips (Eq. 3-6) but reduce the flow in this region. Fig.
H,10d, due to Pinnes [571, shows the limiting radius ratios rh/r as a
function of gas angle and value of n in Eq. 10-15.

Flow angle 1j31 at mean diameter, degrees
90 85 80 75 70 65 60 55 50 45 40

rh/rt = 0.95 0.90 0.80 0.70 0.60+1 10 //
4--
U 00

-2
rh/rt - 0.95 0.90 0.80 0.70 0.60

0 0.2 0.4 0.6 0.8 1.0 1.2

Ratio of velocities at mean diameter (V,/Vg).),
Fig. H,10d. Limiting conditions for balanced flow [571.

H,11. General Three-Dimensional Analysis. Any serious attempt
to examine blade performance in the light of pressure and velocity dis-
tributions around the blading necessitates a re-examination of the accu-
racy of two-dimensional studies at specific inter-row axial stations. This
examination is most necessary when Mach numbers are high, since radial
shifts of flow are mandatory if the blades are choked at some radial po-
sitions and not at others. This type of effect is illustrated in Fig. H,11.
If the flow conditions are calculated before and after the blade rows (Art.
10) and it is proposed to obtain estimates of the blade surface pressure
distributions, a simple approach would be to assume a conical or some
other simple type of streamline path through the blading. This is shown
in Fig. H,11 as a linear variation of flow per unit blade height with
axial distance z indicated by the solid lines, the true variation being indi-
cated by the broken lines. These variations correspond to very signifi-
cant changes in the pressure coefficient C, as shown at the bottom of
Fig. H,11.

Solution of the three-dimensional flow equations in turbomachinery is
very tedious without the aid of modern high speed computing machinery.
Approximate solutions have been proposed by various authors [58,59],
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using what might be called a quasi three-dimensional approach. In this
technique the axially symmetric solution is first obtained. It is then
assumed that this solution provides valid answers for the mean flow
condition through the blades. The velocities on the blade surfaces can

I
.section at "

z

0
Linear ve

tin variation

0.0

0
LL

0 100
Per cent blade width

+ +1
4- Obtained from true variation.

0 0~ --

,, Obtained by linear interpolation

Of pV

Per cent blade width

Fig. HIl. Changes in blade pressure distribution due to meridional
streamline shifts it blade regions.

then be deduced as perturbation effects. from the mean conditions. The
development of secondary flows can only be determined analytically by
replacing the two-dimensional solutions with a full three-dimensional
solution.

(490

i



H,11 • GENERAL THREE-DIMENSIONAL ANALYSIS

Axially symmetric 8olution. The physical picture of a blade row con-
sists of an infinite number of infinitely thin blades which can be treated
mathematically as a force field. A simple transformation of the non-
viscous, isentropic equations of motion [4, p. 741 to a coordinate system
rotating with the blade [61, p. 1031 yields the following relation for steady
flow:

F--Vp = (W.V)W+-2w XW +w X (w X r) (11-1)

In the absence of body forces F, that is, taking the blades as constituting
boundaries rather than force fields, Eq. 11-1 yields three scalar equations
but four unknowns. These latter are the three components of velocity W
and the pressure p. The density p need not be considered as an unknown
since it is calculable in terms of the pressure if entropy is constant or
known [2, p. 191. Entropy gains associated with actual machines render
Eq. 11-1 invalid because of the omission of friction terms. Nevertheless
it is often the practice, dictated by the necessity of getting a reasonably
representative value of p, to include some practical entropy increase for
establishing density levels, and yet use the perfect fluid equation (Eq.
11-1). The fourth unknown in Eq. 11-1 is covered by the law of mass
conservation 14, p. 681,

V. (pW) = 0 (11-2)

The momentum equation (Eq. 11-1) can be written in cylindrical
polar coordinates and expanded to three scalar equations [4, p. 95, Ex. 9],

W,-aW- + -i- a-T + W = "W - I -_
ar r O a PC

(11-3)

W,'L- - - W - - W"- 
2r - 2wW# = F, - _a0 r W0 az r P at

(11-4)

W, W +nW+W, aW0 W+ W + 2TW, F -- p
Or r a6 az r P rao

(11-5)

These equations are reduced as follows if variaions in tangential
direction are omitted (axial symmetry).

W -2 -WoW*- F - P (11-6)
8Or Zz p Tz

W,- + T . a W, WOz r - 2wW0 F, --- (11-7)
p r

OW, + W, Wo! + 2W, F,1w,-gi + I r,+ --
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The equation of continuity (Eq. 11-2) provides the folloing modi-
fied relationship to account for finite blade thickness:

V.- (pWd) 0 (11-9)

where d is a blockage factor defined as

d ffis -•(11-10)

a. being the pitch distance from blade to blade at a particular value of
r and z, r being the corresponding blade thickness (Fig. H,5a).

In the case of a performance solution the blade geometry is given.
The body forces F and the velocity W = V - U relative to the blade
are normal to the blade surface and along this surface respectively. This
introduces further relationships,

F, F,(1-)
u v

Fz - F (11-12)
v W

FWo -+ FW, + FW, = 0 (11-13)

where u, v, and w are the direction cosines of the normal to the blade
surface. If the density is considered calculable from the pressure and
entropy, assumed constant or known as above, the seven equations (Eq.
11-6, 11-7, 11-8, 11-9, 11-11, 11-12, and 11-13) are sufficient for a solu-
tion of the seven unknowns p, F, and W. Outside the blade regions,
between the rows, forces F no longer exist and there are therefore four
unknowns, p and W, with four equations (11-6, 11-7, 11-8, and 11-9) for
solution.

Prior to the advent of high speed digital computers, general axially
symmetric solutions as indicated above would not have been practicable.
Detailed procedures for exact solution have been worked out by Wu 1551.

Blade surface velocity. The ultiwate purpose of the solution of quasi
three-dimensional flow equations is the determination of boundary layer
behavior, which is in turn a function of surface velocities. The blade-to-
blade solution is an approximation in that the general character or flow
change in a radial direction is taken from the axially symmetric solution,
assumed to be unchanged by the presence of actual blades.

If attention is focused on a blade-to-blade region in the 0, z domain,
the momentum equations are represented by Eq. 11-3 and 11-5, where
the body forces in the fluid region are now zero, since they are replaced
by the discontinuous forces exercised by discrete blades. Some assump-
tions must be made to recognize the axially symmetric solution as the
average condition pertaining to the conditions between the blades. A
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reasonable assumption would be that W, and all derivatives in the radial
direction are uniform over the 0, x domain and possess their axially sym-
metric values. Eq. 11-3 and 11-5 then reduce to

Wo aw. + W. 1 +P (11-13)

W #W W.W-+ -W a8 -"1 P (11-14)-'i""- -+ W Ti- -; ' +  * = pree

where a,, a2, and aa are functions of z derived from the axially symmetric
solution. The unknowns are now p, Wo, and W. and the necessary rela-
tionships are given by Eq. 11-2, 11-13, and 11-14. The density p again
need not be regarded as a variable since it is directly related to the pres-
sure [2, p. 19] if some estimate of entropy increases in the flow direction
is made.

Detailed computational techniques to obtain blade surface velocities
and pressures from axially symmetric solutions have been worked out by
Wu and Brown [611, also Wu, Brown, and Prian [62).

More approximate three-dimensional calculation procedures, suitable
for hand calculation, have been developed by Hamrick, Ginsburg, and
Osborn [631], Huppert and MacGregor [10], and Stewart 1641.

CHAPTER 4. TURBINE DESIGN

H,12. Mechanical Considerations. The foregoing articles will en-
able the designer to obtain some insight into the probable blade losses
and turbine efficiency of a given design. However, the aerodynamic con-
figurations chosen may lead to excessive stresses in the materials for a
given weight, or excessive weight for a given stress level. Allowable blade
speed, height, and width are usually dictated by considerations of me-
chanical stress. The availability of materials superior to those currently
available will cause modifications in aerodynamic design. The use of
blade-cooling devices to decrease material temperatures provides this in-
crease in strength even in present-day materials and therefore leads to
similarly modified aerodynamic designs. Stresses in rotating blades caused
by dynamic effects of rotation are known as centrifugal stresses whereas
those in both stationary nozzles and blades due to gas forces are called
gas bending stresses.

Centrifugal blade stresses. The designer will wish to know the effect
of the following variables on centrifugal stress at some radius r:

1. Shaft rpm, n
2. Blade density, pb
3. Blade height, (r, - r)
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4. Radius at tip, rt
5. Ratio of section areas at r and r,, A bAb

6. The manner in which A b varies, e.g. the exponent f in the relation

Ab - Abs r-t -( )
Am - Au, = t -\n-b

The following analysis applies rigorously only to unshrouded rotating
blades. For shrouded blades, the force exerted by the shroud must be
determined separately and distributed over the section at any required
radius to form an additional increment of stress. The relationship between

Centrifugal stress 0','

Section area-= At,
Tip Radius = r,

A0 n = annulus area
dr = "'I(r - r2 )

n = rpm = (/2n)1/60

Section area = At
Radius = r
Centrifugal stress - cy b

Hub Section area = Ab,
Radius = rh
Centrifugal stress-- 00 bh

Fig. H,12a. Rotor blade under centrifugal forces.

centrifugal stress in the blade and the above variables (Eq. 1-6) can be de-
luced by integrating the total centrifugal force over any section Ab at
radius r (see Fig. H,12a),

Total force over Ab = A= Jrf , (rw2)pbAbdr (12-2)

By using Eq. i2-1, the section area A,, can be expressed in terms of the
radius r in Eq. 12-2, which leads to

db-- [(rb -= ) (Ab - Abt) + AbMJ rdr (12-3)A bW' fr " Ir --: Ih

where w is the angular velocity (2rn/60). Eq. 12-3 can then be integrated
to obtain

U7rb I A I - Ab/Ab( / 1- (

PbW (r - r
2 ) 2 Ab +  I + X -+ -r2 4
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Eq. 12-4 can also be written

27_T____T_+2 (12-5)
Pb(nl/60)'A.., b I + I f+2

Eq. 12-5 can be written

: 2wT (12-6)pb(n/60) 2A.,.

where the taper factor T accounts for the combined effects of the area
ratio Abt/ Ab, the hub-to-tip radius ratio X, and the exponent I, and will

0.8 -.. .. . ..-

U- 0, __ 115 _.s _

0.6- -65

0
U 0.4-

0.

0 0.2 0.4 0.6 0.8 1.0

Area ratio Ab,/Ab

Fig. H,12b. Effect of blade thickness on centrifugal stress.

be unity if Ab Ab is unity. The expression for taper factor T is therefore

=At+ 2 AM, I I -T I A -b - X- -A + +2J (12-7)

This relationship is shown in Fig. H,12b. The rather weak effect of the
hub-to-tip radius ratio X, the strong effect of Abt/Ab, and the intermedi-
ate effect of the exponent f can be seen.

A given maximum value of centrifugal stress 0 Orb dictates a maximum
hub value of the term pbn2 A.o, for a given blade section area ratio, Ab./Ab,

and value of f. If this value is exceeded, some compromise solution must
be reached. The options at the choice of the designer are:

I. Reduce rpm, n. This increases the work coefficient 0 (Eq. 3-11) and
therefore reduces the efficiency (Fig. H,3d) unless the weight penalty
of additional stages is taken. Moreover, the compressor, which also
rotates at rpm n, suffers similarly.

2. Reduce the annulus area A.... This increases the axial Mach numbers
and ultimately leads to high shock losses in the blading.
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3. Reduce Am/ Ab. Where this is already smal, little advantage is pined
in going to the limit Am/Ab - 0 (see Fig. H,12b).

4. Increase f in Eq. 12-1. This is only effective when the ratio Ab,/Ab is
small (Fig. H,12b). In that case it will ultimately lead to knifelike
blade tips which are subject to fatigue failure. They may also be un-
satisfactory aerodynamically, since the thin leading edges do not allow
a large incidence range. Unduly thin blade tips can be avoided only
by increasing the blade section area Ab at the point in question. A
limit is reached here when the passage areas through the hub regions
of the blades become highly blocked and pressure lomes increase
sharply.

5. Maintain centrifugal stress at its present level and reduce bending
stress instead. This involves increased blade width and consequent in-
crw %ed turbine weight as it will be seen later.

An optimum design requires as its ingredients those proportions of the
compromises 1-5 which penalize the performance least. The choice is
complex and emphasizes the need for more precise knowledge of the
performance penalties which these compromises entail.

Gas bending stresses. The width of each blade row is determined
largely by the allowable level of stress due to gas bending forces. The
intensity of the latter will be a function of radius and are due to:

1. Static pressure drop across the nozzles or rotors.
2. A momentum term, p°V.o - p1V.,.
3. Tangential forces due to change in swirl velocity across the blades.

The reaction force on the blade can be expressed more precisely as a
function of fluid states in the form of Eq. 3-1, if applied to the flow
between two cylindrical surfaces generated by r and r + dr. This yields
the following relation if unsteady terms are ignored.

- f pFdv - force of total fluid volume on blades

- f npdA + f (n" V)pVdA (12-8)

The right-hand side of Eq. 12-8 yields force items 1, 2, and 3 above as
the major contribution to axial and tangential forces. Only if large radial
flows take place will additional contributions from the last term of Eq.
12-3 take place. These can be regarded effectively as transferring forces
from one radius to another. Exact calculation requires exact knowledge
of the whole fluid flow pattern.

Unfortunately the gas bending stresses as determined by the time-
averaged bending forces and section shape do not lead directly to an
allowable blade chord or width. Any flexibility in blade-to-disk fixation
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causes the blade to set itself in a slightly nonradial direction so that
centrifugal forces then exert a moment to cancel out the bending forces.
Complete cancellation would reduce the effects of gas-bending forces to
a cyclic loading caused by unsteady effects, such as wakes and secondary
flow patterns upstream. The harmonic content of this loading varies with
turbine design and its effects vary with natural frequencies of the blade
and its damping qualities. Considerable experience, coupled with experi-
mental verification, is therefore required to fix the minimum allowable
chord for any blade row. If blades are shrouded, the system will be stiffer
but the shrouds will impose additional centrifugal stresses on the blades.
It may nevertheless be advantageous to exchange some reduction of

4-,

U

-c 1.00
Value for rectangular section

0 .60

'0 0.0 6Op0p001-

0

40.60 ___

C 40 60 80 100 1200
Z Deflection f -a, degrees

Fig. H,12c. Approximate blade section area as a
function of thickness and deflection.

unknown vibration loading for extra centrifugal stresses that can be
calculated.

In the case of fixed nozzles, an entirely different stress picture is
presented, centrifugal stresses being absent but large steady bending
stresses being present in addition to unsteady stresses.

For general design studies a statistical relationship between blade
section properties and angles is useful. Fig. H,12c and H,12d show such
relations for nondimensional area of cross section r = Ab/ci and section
modulus t = (Abk 2)/(bic), where c is the blade chord, t is the blade
thickness, kib is the radius of gyration of the blade section about the
principle axis, and b is the distance of the furthest blade fiber from this
axis. Some variation naturally exists between blades of the same value
of 1/c and deflection, depending on camber shape and thickness form, and
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Fig. II, 2d. Approximate blade section modulus as a
function of thickness and deflection.

therefore it must be emphasized that Fig. H,12c and H,12d are for survey
purposes rather than mechanical design.

Standard relations between applied forces and stress a,, for a rec-
tangular bar of thickness t, width c, and height h indicate approximate
relations for a blade fixed at one end as follows:

utb. varies directly as: (a) Total bending force L on blade row.
(b) Blade height h = r,(1 - Xh).

au varies inversely as: (c) Number of blades Nb - h
sh(d) Section modulus = Ects

An example of the use of these relations would be to determine the vari-
ation of chord at the hub, Ch, with allowable bending stress ab.h, height h,
gas load L, and value of s/c, t/c at the hub.

Lr,(1 - Xh)sh

Orbe .2 ,

(C), (1 (01,

Consequently,

C [-(a)(~ h (12-9)

Eq. 17-2 will be used later for weight estimation.
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Weight estimation. The considerable influence of turbine aerodynamic
design on weight is well brought out by a brief speculation on probable
design features if mechanical properties constitute no barrier. Blade
speeds would the.a be increased, giving increased work (Eq. 3-6) if veloc-
ity triangles (Fig. H,3f) remained similar, compressibility considerations
introducing the first barrier. Blade widths would be a minimum con-
sistent with Reynolds number effects (Art. 9). Much higher turbine inlet
temperatures could be employed, which generally increase the engine out-
put and sometimes also decrease fuel consumption [65].

Factors affecting disk and blade weights are considered separately
although it may be seen that many of these are common. It must be

Fd (--) centrifugal forces due to disk material
Shroud Fb (-) centrifugal forces due to blade materialAF (-AP) tangential forces in disk

W.b h ' l a d e s

Wr

rt d isk

~T wf

Fig. H,12e. Equilibrium of external and internal forces on rotating disk.

emphasized here that the relations which follow are often only approxi-
mate and therefore will not serve for detailed stress or weight calculations,
particularly in extreme cases. They are rather intended for preliminary
design purposes, so that the necessary processes of adjustment between
considerations of aerodynamics, stress, and weight can be facilitated. A
method of disk weight analysis alternate to that given below has been
derived by LaValle and Huppert [66] on the basis of a disk thickness
which varies exponentially with the radius.

Disk weight analysis. For the purposes 6f this analysis a sufficiently
accurate criterion of stress intensity in a rotating disk is that of average
tangential stress. This is the stress that would be experienced over the
area Ad (Fig. H,12e) due to the integrated centrifugal forces arising from
both disk and blades, The total radial centrifugal force exerted on the
disk material is

Fd f r,'dM

where dM is an element of mass and w is the angular velocity. This sum-
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mation can be written as

F4 = n)t~p. J wr2wrdr (12-10)

where wd is the disk width at any radius r and pd is the density of the
disk material.

Writing fwdrsdr = Adkdc, Eq. 12-10 becomes

Fd = 2 (2w)2 n2pdAdkd 1211

To assess the disk stresses, the centrifugal force due to the rotating disk
must be added to the similar force exerted by the blades. The latter can
be written as

Fb = 4rtbhAbhNb (12-12)

where Abh is the area of cross section of a blade at the hub.
In the case of shrouded blades, a'dbh cannot be determined in a simple

fashion such as by Eq. 12-5. Nevertheless dbh is set at some maximum
figure and it is this quantity which is assumed to be carried through the
subsequent analysis. In cases where the hub section is connected to the
root by a shank (r, # r,), the value of a,,, is increased by some factor.
Eq. 12-4, 12-5, and 12-6 show that this factor is of the order

(I -!

The total radial centrifugal force is thus

F = Fd + F, = 21 (9 n 2PdAdkd + -bAbbNb 1I ' (12-13)

The average tangential stress in the disk may be defined as (Fig. H,12e)
F, Fd+ Fb 1

2A - 2A4  (12-14)od 2Ad 2Ad !

where F, is the numerical sum of the vertically resolved components of
the radial force F/2 acting on each half of the disk. Combining Eq. 12-13
and 12-14,

1- :
2 ,) 2i, r2_27() nPdAdk + ebhAbhNb - h

2rA 4  
(12-15)
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Eq. 12-15 may now be rearranged to determine the disk area Ad if the
other quantities are known,

u.dbAbbNb 1 .2
1 -A, = 2 [ d4 - ( ),] (12-1)

The possibility that the denominator in this expression for Ad can be zero
(Ad -c c) is a logical outcome of the possible equality of the centrifugal
stress term (2r/60)tnpdk and the allowable stress term ad. The disk area
Ad would then necessarily be infinite in order to carry the additional
centrifugal load due to the blading. In practice, Ad and consequently
the disk weight increase very rapidly with blade loading if the disk is
only just self-supporting. This requires a reduction in rotational speed.
The total disk weight can be written as

Md =Pd f wd2lrdr = 21rpdfdAd (12-17)

where f4 is the distance of the centroid of A4 from the axis. Eq. 12-16 and
12-17 can be combined to give

.r2

M Pdb 1 h (12-18)

Od VO )fliPdk'd

Some of the terms in Eq. 12-18 are more conveniently transformed. The
number of blades may be expressed in terms of the hub pitch-to-chord
ratio, since this ratio is an important ingredient of good performance
(Fig. H,3g):

N cb (12-19)

The blade area at the hub Abh may be expressed in nondimensional terms
as (A/c)bb (Fig. H,12c):

Ab ) ) = , t (12-20)

The blade width and chord may be related approximately to the stagger

( 501 )



H • AERODYNAMIC DESIGN OF AXIAL FLOW TURBINES

angle y (Fig. H,3a) as cony. (tw) "" con a.. (12-21)

where a.. is defined by Eq. 8-8. The r-ngle -f is used here as a convenient
approximation to define a direction perpendicular to the average line of
action of the total force on a blade. If no losses take place this angle
should properly be a. (see Sec. A). The blade chord at hub cl is a func-
tion of allowable bending stress, the form of which has already been
developed (Eq. 12-9). Since the tangential load on the blades is related
to the work by Eq. 3-5, the blade force L can be expressed in the follow-
ing manner:

L -(~
U. Cos 7 is

!Q. n r'(1 + X.) 8 (12-22)2Cos '

where Q is the total mass flow rate through the turbine and the mean

work coefficient 0. is defined by Eq. 3-11. Inserting Eq. 12-19, 12-20,
12-9, and 12-22 into Eq. 12-18,

(M Q) (nr)' "_b
Md At r, (7)idt 1 4 4 d

g 60

7, riA

cost

when (Q/A%) is the flow rate per unit frontal area and a, is a constant.
The constants 144 and g are added if ad is expressed, as usual, in psi.

The thiekness-to-chord ratio t/c does not appear explicitly in Eq.
12-22, which is attributable to opposing effects of centrifugal forces (Eq.
12-12, 12-19, and 12-20) and gas bending forces (Eq. 12-9). Intuitively
it can be seen that, for a given hub centrifugal force, an increase in blade
thickness tends to produce higher rim loading, Fb, but also leads to re-
duced bending stresses, thus permitting smaller blade chords, restoring
the status quo. In practice, blade thickness-to-chord ratio has an effect
through changed values of r and t (Fig. H,12c and H,12d). Also a de-
crease in tic makes the blade less stiff, probably increasing the tendency
to vibrate and thus increasing the constant of proportionality in Eq. 12-9.
The constant is an ingredient of the constant a, in Eq. 12-23.

The fact that o¢ occurs in the numerator of Eq. 12-23 rather than the
denominator, as does a,., implies an increase of disk weight with allowable

centrifugal stress. This is due to the higher disk loading that this increase
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entails. The presence of the ratio u/(r.)i indicates that increase of
bending stress at the expense of centrifugal stress is favorable to weight
reduction. However, for a given value of the hub-to-tip ratio 4h, this en-
forces thicker blade sections at the hub and thinner sections at the tip
(Eq. 12-6 and Fig. H,12b), resulting in decreased aerodynamic perform-
ance. In addition, an increase in the bending stresses increases the vibra-
tory portion of the loading, which is least amenable to exact calculation.

Disk weight is a complicated function of Xh. Eq. 12-23 shows a zero
weight at the extremes of h = 0 and h = 1. In the former case this is
due to the vanishing disk size and in the latter uase to the absence of
blades altogether.

The first and second moment ratios fa/r, and kd/r, in Eq. 12-23 em-
phasize the need for placement of disk material as near the axis as possi-
ble. For weight comparison purposes these can be assumed to remain
constant from one design to the next.

Blade weight. If the blades were replaced by solid material of width
equal to the average value for the disk, the entire rotor weight might be
expected to have the value Md/X. Due to partial solidity of the blading,
the rotor weight is often very nearly equal to Md/Xh. For optimization
purposes a more precise investigation of factors influencing blade weight
can proceed as follows.

The weight per blade varies linearly with the area of the cross section,
the height, and the density. The weight of a complete blade row can then
be written

Mb - * pb(r, - r,)Nb (12-24)

This assumes that the section area varies linearly with radius and is
substantially zero at the tip. The values of Abi and Nb can now be ex-
pressed in terms of allowable pitching (Eq. 12-19) and allowable chord
(Eq. 12-9). Using also Eq. 12-22, the dimensionless weight of a blade row
becomes

Mb Q~ 1 rQ (nr) I-X 1 1 (\1
PV!, rd ( /c), L cos Y. Zh 'beb, (c)h,

k7a, ~-.nr) [81C)'bb COst'Y

i ) I

where a2 is a constant.
Eq. 12-25 may be used in this form for studying influences on the

weight of a stator row.' It can be combined with Eq. 12-23 for study
I Eq. 12-25 uses Eq. 12-22 to obtain the torque on the blade row. This is strictly

accurate only for the rotor. It is accurate for the stator if the swirl velocities entering
and leaving the stage are equal.
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of the rotor weight as a whole, as follows,

(Qto (I r Xh 1L__ *) (1-

(I7 \A 1  , i I) O~7
_______ / ro 1

A,, Q8/0 coiit (
- a1  1h\.1 1)h rhr + Pd

X( a,- a2 - (12-26)1 4 4 ad 2i 22l(r,2)2 Pb

E.In assessi 1g the influence o? aeoyai prmtr contained inSX 60/ r, / r,

Eq. 12-26 on rotor weight, the contents of the first four terms in the
product influence both the disk and blades equally and remarks relative
to disk weight (Eq. 12-23) therefore also apply to the complete rotor
weight. The contents of the last product term reveal those items which
influence the disk or blade weights only, i.e. those multiplied by the fac-
tors a, and a2. These factors are best determined by examination of a
number of designs similar to that under investigation.

Although Eq. 12-25 and 12-26 are useful for weight assessments in a
preliminary way, the weights of actual turbines are influenced consider-
ably by detailed design which may modify the constants a, and a2 or the
first and second moment ratios fd/r, and kd/r,. Also the turbine casing
should rightly be part of the turbine weight, as should any coupling be-
tween the disks of multistage turbines for driving purposes. Nevertheless
the relationships given supply the aerodynamic designer with some indi-
cation of factors governing weight and enable fairly accurate comparisons
to be made between two similar designs.

Some variations in disk and blade weight derived from Eq. 12-23,
12-25, and 12-26 are indicated in Table H,12 in the form of a representa-
tive weight for standard conditions and revised weights for changes in
the variables, one at a time.

11,13. Aerodynamic Design Methods. Aerodynamic turbine design
procedure is often divided into two distinct phases, the first stage being
the calculation of velocity triangles defining the gas conditions between
the blading and the second stage being the design of the blading itself.
This procedure is only fruitful if the first phase is carried out with the
implications of the second phase and stress considerations in mind. Ex-
perience must be the guiding factor for choice of the particular combi-
nation of gas angles and velocities that leads to the desired combination
of stress, weight, and efficiency. These estimates may require modification
after the blade shapes are studied.

The probable effect of velocity triangle choice on blade losses and
turbine efficiency can be estimated if a general relationship between gas

( 505 )



H • AERODYNAMIC DESIGN OF AXIAL FLOW TURBINES

angles a and #, pitch-to-chord ratio 8/c, and loss coefficient Y can be
found. Such a relationship has been estimated by Ainley (51 on the basis
of a variety of tests such as those indicated in Fig. H,5f. These relation-
ships are necessarily approximate in that Mach number effects, secondary
flow losses, and blade thickness variations are not included. They are
shown in Fig. H,13a and H,13b, the first figure relating to gas inlet angles
0 of zero (reaction) and the second for angles , equal to -a (impulse).
Other values of 0 can be obtained by interpolation. Each pair of gas inlet

a) 0.08

.3C

:0.06
4N Values of outlet gas angle a, degreesN
.4-

S0.02

0

44-

'~00

00

0.3 0.5 0.7 0.9 1.1

Pitch-chord ratio s/c
Fig. H,13a. Profile lose coefficients for reaction blades 15].

and outlet angles thus gives a minimum value of profile loss coefficient Y,,
for a particular value of pitch-to-chord ratio 8/c, and these minima may
be inserted into relationships for turbine efficiency, such as Eq. 4-12.
Data obtained in this way are shown in Fig. H,13c. They indicate that,
other things being equal, the best efficiencies for a given value of work
coefficient 0 are obtained at values of blade outlet angle as in a definite
range. The desirability of choosing a value of V,/ U for a given value of
which is neither too high nor too low can be appreciated qualitatively.
Very high values of V,/U cause high friction losses, which are propor-
tional to dynamic head, whereas very small values give rise to high gas
angles a and # (Fig. 11,3a) and therefore high losses (Fig. H,13a and
H,13b).
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Fig. H,13b. Profile loss coefficients for impulse blades [6].

The detailed procedure by which the best possible set of velocity tri-
angles is attained varies with the extent to which the duty quantities,
such as blade speed, pressure ratio, and gas flow are fixed by over-all
engine design. The general approach nevertheless is apparent from a
typical example which follows:

Quantitiem that are fixed (turbine duty)
Shaft rpm n
Inlet referred flow Q io.

In1

Desired work per pound of gas h: - h:
Number of stages N
Maximum tip radius (rt)m,,
Vortex type e.g. value of n in Eq. 10-15

The choice of interstage gas conditions is best made by the selection
of hub conditions, where the design is most critical owing to the minimum
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. ,s contours for impulse conditions
-, contours for 50% reaction conditions

- - Gas inlet and outlet relative angle to blades for impulse
condition (P = 1)
Gas outlet angles from nozzles or blades for 50% reaction
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Fig. H,13c. Stage efficiency as a function of reaction, work, and flow parameters.

blade speed at that point. It is sometimes the practice to design for a
referred flow slightly higher than the actual value at which the turbine is
expected to operate. This is justified by the blockage presented by bound-
ary layers which causes increased axial velocities in midstream positions.
Some important design quantities that must be selected to give a turbine
the highest efficiency compatible with its life and weight are as follows:

Design criteria-Hub values. Severe Mild

a. Exit Mach number M, 0.65 0.40
b. Degree of reaction D for each stage 0 35 per cent
c. Gas deflection through rotating blades 1200 80*
d. Axial velocity coefficient V,.,/U 3 j
e. Mach number relative to blading at outlet

W/vi-6T. 1.2 0.6
f. Hub centrifugal stress severity criterion

ns A....h (rpm* fts) First stage 250 X 106 150 X 106
(See Eq. 12-6) Second stage 300 X 101 250 X 100

g. Exit swirl angle ft, (Fig. H,3a):
with outlet guide vanes: -30 - 15*
without outlet guide vanes: -20 0 °
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The values given under "severe" and "mild" columns represent cur-
rent values for designs that are highly loaded and lightly loaded (either
aerodynamically or mechanically) respectively. The former are pertinent
to a very light turbine for a low-life engine, due sacrifices being made for
maximum power per unit weight. The latter column represents a highly
efficient and durable but rather heavy multistage turbine, perhape for a
long range power plant. The distribution of work between the stages must
be adjusted to produce a balanced design, that is, with none of the quanti-
ties (a through g) abnormally high at the expense of any of the others.
The shape of the annulus must also be considered. It is advisable to intro-
duce annulus flare so that density reductions are offset by larger annulus
areas. If the tip diameter is held constant and all radius changes are
brought about at the hub, use will be made of the maximum possible
blade speed but the gas may suffer excessively high changes of direction
in the meridian plane, in the hub region. This position can be alleviated
by introducing some of the flare at the outer annulus, but the mean work
coefficient #. (Eq. 3-12) will be higher.

The progress of a design can now be outlined as follows:

1. Decide on an outlet Mach number and swirl angle. For a given duty
the exit area is then fixed and the hub diameter can be found.

2. Fix an annulus shape, i.e. hub and tip radii at all inter-row stations,
a work diotribution, and also a degree of reaction at the hub for all
stages except the last, where it is already fixed by the c-tlet conditions.

3. The hub tangential velocities at all inter-row positions can now be
determined (Eq. 3-6 and 3-15). A value of n in Eq. 10-15 must be fixed
to give values for V. at all radii. For free vortex designs, n -1. The
value of n cannot be chosen arbitrarily, both before and after the rotor,
if constant work at all radii is required.

4. Axial velocities must now be determined. Their precise determination,
even assuming axial symmetry, is a lengthy process (Art. 10 and 11)
due to streamline shifts (Fig. H,10a) to accommodate the radial force
balance. For free vortex designs the assumption of constant pV. with
radius is usually sufficiently accurate (Art. 10).

5. The inter-row conditions are now fixed and it only remains to examine
them in the light of the design criteria (a through g) which large'y
control the efficiency and stress level. By systematic examination and
adjustment of these quantities for each stage, it is possible to achieve
hub and tip radii, hub reactions, work distribution, and exit conditions
so that all quantities (a) through (g) are roughly in the same position
relative to "severe" and "mild" values. A balanced design is then
achieved.

The indicated range of values to be given to design criteria (a) through
(f), though representative of modern practice, is still somewhat a matter
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of debate. Turbine efficiency is logically related most directly to the
velocity distribution over the blade surface (Art. 5) and to secondary
flow considerations (Art. 8). Criteria (a) through (g) are related to per-
formance in a more indirect manner by test experience.

Typical velocity triangles for a single-stage turbine have been given in
Fig. H,10b. This turbine is designed for the following duty:

Inlet stagnation temperature T, 2000*R
Rotor rpm n 13,500
Total flow Q at 73.5 psi inlet pressure 62.7 lb/sec
Work per pound of gas ha - h, 56.4 Btu/lb
Stagnation pressure ratio p?/pg at 95 per cent for vi. 1 57
Hub diameter (const), 2rj, 15 in.
Tip diameter (const), 2rs 20 in.

Values of design criteria (a) through (g) for the hub condition are as
follows:

a. Exit Mach number M, 0.5
b. Degree of reaction (Eq. 3-14) 24 per cent
c. Deflection through rotating blade 77.7*
d. Axial velocity coefficient V54.,/U 1.08
e. Mach number relative to blading at exit 0.69
f. Stress criterion n2A.,. (rpm' ft') 176 X 10'
-K. Exit swirl angle 0, -5.40

Charts and graphical aids for rapid determination of velocity triangles
for given values of some of the variables (a) through (g) have been de-
veloped by Cavicchi and English [671 and by Reeman and Simonis [68].
Fig. H,13d shows a typical design chart due to the latter authors whereby
all relevant data for the hub condition are given in terms of two variables,
such as the turbine enthalpy drop and the blade speed, for a given value
of exit swirl angle and degree of reaction.

Blading design. Final velocity diagrams can now lead to the design
of blade shapes, which are a compromise between aerodynamic and me-
chanical considerations. The former are best suited by thin, closely spaced
blading, whereas the latter call for thick blades, which are therefore of
necessity pitched farther apart to avoid excessive blockage (Eq. 5-4).

General factors influencing the choice of blade shape have already
been indicated in Art. 5, 6, and 7. There are very clear advantages in
keeping the blading thin (Fig. H,5f), the trailing edge thickness small
(Fig. H,6c), and the operating Mach numbers low (Fig. H,6d). In the
case of limiting designs, where all of these quantities are increasing, an
exact three-dimensional study (Art. 11) of the pressure distributions
around the blades is desirable. The blading performance can then be
predicted by boundary layer calculations 1141 or by correlation with sur-
face pressure distributions [121. There are good indications [22,23] that
straight-backed blading is most suitable for relative exit Mach numbers
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of the order of unity or higher, whereas some trailing edge curvature is
desirable for lower relative exit Mach numbers.

The possibility of obtaining high subsonic velocities relative to the
blade surfaces without severe reductions in turbine efficiency has been
demonstrated by a series of transonic turbine tests [69,70,71,72,78,74]
conducted at the NACA Lewis Flight Laboratory. Approximate methods
due to Stewart [641 were used to determine the three-dimensional flow
pattern over the blading, and, in particular, as a tool to minimize the
pressure rise over the pressure and suction surfaces of the blading. In this
series of tests it was found that turbine efficiency correlated well with a
total diffusion parameter defined as D. + D, where

D, = (inlet relative velocity)-(minimum surface relative velocity)
inlet relative velocity

D (maximum surface relative velocity)-(outlet relative velocity)
maximum surface relative velocity

The total diffusion parameter D. + D, can be interpreted with the aid of
Fig. H,5d as representing the sum of the increases in pressure on blade
pressure and suction surfaces, which will trigger boundary layer growth
and will therefore be major causative agents for turbine inefficiency. An
accurate determination of the exact meridional streamline pattern is
necessary in order to determine the velocity and pressure distributions
over blading, since, under transonic conditions, velocity is very sensitive
to stream tube area.

Pitching criteria. Optimum pitching criteria developed by Ainley
have already been indicated in Fig. H,13a and H,13b. Other pitching
criteria due to various authors are available. Criteria based on a limiting
value of the blade lift coefficient have been given by Howell [75 and by
Zweifel [76]. Howell's criterion is of the form

CL. = 1.125B (13-1)
where

S 1) (13-2)

585-
s

C

Here CL. is the blade lift coefficient based on outlet velocity (cf. Eq. 8-6)
and defined as

CL, = 2 a (tan 0 - tan a) coal a (13-3)

C COS a.--(1

where a, is the vector mean gas angle already defined in Eq. 8-8. The
blockage term B is introduced with the thought that, for blades of finite
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thickness, neighboring blades will touch when t/c - s/c (Fig. H,5a) andtherefore the allowable lift coefficient under these extreme conditioLS

must become vanishingly small. The blockage factor B, in Eq. 13-2 be-
comes unity when s/c is equal to one and zero when s/c equals 1.

1.2

uReaction blades )= )

0
- 0.8 •-

0.6,

-C o Impulse blades

0.4

E Note: For reaction blades,
s/w S (s/c)/cos y L_ (s/c)/cos a.

0. For impulse blades, s/w e-- s/c
002 I I I I

- Zweifel's criterion (76] for P - I
Howell's criterion [75, 77]
Ainley-Reemon test data (Fi?. H,5f)

0
- 30 -40 -50 -60 -70 -80

Outlet flow angle a relative to blade
Fig. H,13e. Optimum pitch rules for turbine blading.

Zweifel has defined a loading coefficient 4,, which is substantially the
same as Howell's definition of CL. (Eq. 13-3), namely

SI cos' a [ tan a + tan0 + - (13-4)

Values at inlet and outlet are taken along the same streamline. If there is
a negligible streamline shift across the row, Eq. 13-4 becomes

2 os' tan -+ T tan , (13-5)

In comparing the pitching criteria of Eq. 13-1, 13-2, and 13-3 with those
of Eq. 13-5, these will be identical for 1.125B 4', W,1 = W,o, and W =

c cos a,. The latter is a geometrical relation nearly true for most blades.
The coefficient 4 is usually chosen to have a value in the range 0.75 to 1.2,
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thicker blades having the lower values. Eq. 13-4 then fixes the required
pitch-to-width ratio 81w if the gas inlet and outlet angles are known.

Values of s/c obtained by applying Howell's formula (Eq. 13-1) are
compared with values using Zweifel's formula (Eq. 13-5) and with
Ainley's relationship (Fig. H,13a and H,13b) in Fig. H,13e.2 The fairly
large discrepancies do not in practice cause concern since variations in

0.12 I -1

0.0

0- 3 0.08 0 II, -- _ . _ -

0.08 C.1-F

c" Total value '4 ±r Ys

) 004
, - Profile loss Yp

(D0 (estimated from [5])

u 0.02

00

J

0.00

0.7 0.8 0.9 1.0 11 1.2 .4

Pitch/chord =-- s/c (mean value)
Fig. H,13f. Effect of pitching on losses, for a nozzle [79.

blade thickness and form give rise to discrepancies of this order. More-
over, in the usual operating range of angles (a, -- -50 ° to -60 °) agree-
ment is good.

Other methods of fixing the desired value of 8/C or a/w, using bound-
ary layer separation criteria, have been developed by Goldstein and

Mager [78].
It has been customary to set blade-pitching on the basis of two-

dimensional loss data mentioned above and to ignore secondary flow con-
siderations. This is justified only if the ratio Y./Y, remains constant for
a given cascade as the pitch is changed. There are some indications that

'The sign for the term tag a in Eq. 13-3, 13-4, and 13-5 is in accordance with the
sign convention of Fig. H,3a for a rotating blade. This sign is reversed if a is con-
sidered positive as drawn in this figure.
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this is true. Johnston has carried out tests on a nozzle for a range of
pitching [79], comparing the pitching for minimum over-all loss with that
predicted from data [51 on profile losses. The upper curve in Fig. H,13f
shows the experimentally determined over-all loss Y. + Y,, while the
lower curve indicates the expected variation of Y, from the two-dimen-
sional cascade data. Very good agreement between optimum s/C based
on Y, and that based on Y, + Y. is obtained.

U,14. Performance Characteristics.

Analyses of test data. The measured performance of a given turbine
is conveniently expressed in terms of efficiency i,. and flow Q ,/i/60 as

S90 point
C D x
4).

k85 B

>. Vertical rpm S

u lines indicate
80 -liriting'- I

w!

W~lork o efcet,,

2- 32

Fig. H,14a. Typical turbine characteristics obtained from test data.

functions of the work coefficient m and the over-all pressure ratio pO/pO.
A choice of variables alternative to pO/po and ,, such as n/V / ,
(h° - h°)/O ° can be made, these being directly derivable from each other
through Eq. 3-12 and 3-13. The inclusion of the parameter as a varia-
ble is significant in that this single parameter will suffice to define the
turbine operating point for incompressible flow, as it does for instance in
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Fig. H,3f and H,13c. The second parameter, pO/pO, exerts various modifi-
cations to the incompressible operating mode, being usually large enough
to give rise to significantly high Mach numbers in the turbine.

A typical experimentally determined relationship between 91. or
Q V'2/85, 0. and pO/pO is shown in Fig. H,14a. Lines of constant re-
ferred rpm n/V/F are also shown. Other important data often required
are the mean outlet Mach number and the outlet swirl angle. Referred
flow is nearly constant for most operating conditions because the Mach
numbers in the blade throats are generally high. Large changes in de-
livered work are produced by large changes in these Mach numbers,
which correspond, however, to comparatively small changes in flow [3,
pp. 139-140].

As discussed in Art. 7, continuous reduction in back pressure will load
,ip a blade only to the point where the supersonic expansion fan com-
pletely envelops the suction surface (Fig. H,7b and H,7c). Further in-
creases in the pressure ratio then manifest themselves as decreases in
efficiency with constant work. This effect can be seen in Fig. H,14a as
vertical lines of constant rpm when over-all pressure ratios become
very high.

Off-design conditions which lead to reduced efficiency are indicated in
Fig. H,14a as points A, B, C, and D. These can be categorized as shown
in Table H,14. Changes are given relative to the design point P in
Fig. H,14a.

Table H,14.

Point in Work Pressure ratio Work

Fig. H,14a ho - h, p*/p* coefficient Wheel speed

A Increased Increased Design Increased
B Decreased Decreased Design Decreased
C Decreased slightly Design value Increased Decreased
D Decreased slightly Design value Decreased Increased

Blade performance

Incidence Outlet Mach Outlet swirlnumber

A Normal Decreased More negative
B Normal Increased More positive
C Positive Normal More negative
D Negative Normal More positive
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Velocity triangles corresponding to the off-design conditions A, B, C,
and D are compared in Fig. H,14b with the design triangles. All compari-
sons are made by scaling the wheel speed to the same dimension, since
this best indicates angle relationships. A comparison of velocities requires
rescaling the diagrams.

The performance curves shown in Fig. H,14a can also be deduced
theoretically 128] provided the blade element pressure losses as a finetion

- Design operating point

Increased pO/po constant qo

Decreased P0/P constant 9p

Nozzles Blades

Design operating point
Increased (m constantPO.s°

S ............ Decreased 9,, constant p s/p° .. *..4

',4'

Nozzles Blades

Fig. H,14b. Changes in operating conditions caused
by off-design values of 0. and p4/p .

of their operating conditions are known. In the presence of compressi-
bility effects, simple relationships such as Eq. 3-20, 3-22, and Fig. H,3f
are no longer sufficiently valid. However, a row-by-row technique can be
employed [26,27] whereby the relative outlet conditions from each row
are deduced from the relative inlet conditions by regarding the blade
passage as a simple converging duct. In this way the work, pressure drop,
etc. can be determined in respect to any number of rows for prescribed
values of inlet mass flow and rotational speed. If the blading varies sub-
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stantially in form from hub to tip, a simple calculation based on mid-
height will no longer be accurate. Performance calculations then require
three-dimensional procedures (Art. 10 and 11).

Multitage turbinea. Matching. If the performance characteristics
of the separate stages of a multistage turbine are known, the combined
characteristic can be worked out by assuming the input conditions from
one stage as the output conditions from the previous stage. Stages which
are choked, or nearly so, i.e. where referred flow is changing slowly with
stagnation pressure ratio across the stage, do not redistribute their work
evenly when the over-all pressure ratio is reduced at a given referred
rotational speed (rpm) n/lV/. This can be demonstrated by considering
three such stages, say 1, 2, and 3, each designed for a certain pressure
drop. The behavior of each stage is illustrated in Fig. H,14c, being a
unique line for a given referred rpm nl/V and very nearly so for differ-
ent values of referred rpm. Let the design points be A 1, A2, and A . A
very small alteration in pressure ratio and flow of the first stage to some
point B1 will lead to a greater divergence from design for the next stage
to some point B2 , as can be seen from the following identity:

P2 - / (14-1)

Using the polytropic relation between the pressure ratio and the temper-
ature ratio (Eq. 2-15), Eq. 14-1 can be written

P 0  0 0(14-2)

Therefore

_. l k --B -12)B- (14-3)

60 A So A - I2A
This causes a still greater divergence from design operating point in
respect to stage 3 to an operating point B3. An increased pressure drop
across the three-stage unit is thus accommodated almost entirely by the
last stage. Similar reasoning shows that decreased pressure ratios cause
the unit to rematch at points C1 , C2, and C3 . The operating line of the
whole unit is shown in the lower half of Fig. H,14c, where

0 0 0P4 P2 P A

Fig. H,14c indicates that the referred flow of the multistage turbine as a
whole remains very near the design value for stage 1, even though this
stage has a higher flow capacity if operated alone. Eq. 14-2 shows that
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the full capacity of this machine will only be used if p?/pl is decreased.
This tends to occur at the lower values of rpm, as borne out by the
experimental data shown in Fig. H,14a.

The division of the pressure ratio among the three stages is indicated
in Fig. H,14d. The absorption of most of the changes in over-all shaft

B3

0' 2.5 -

P0 Stage I P0 Stage 2 P3 Stage 3
p 2  3

18 - - -_82 A 3B, 1.85 1.7 A

1.53 B1 1.6 K.

15 C A 1.45
1.47 C2 1.3 - -

99 100 101 137 140 143 180 200 230

QXf7f&0 QV4F2/I82 QV(F3/60
Individual match points

07 B

R6

5
V) - A.

03

> 2
0 

l1 -
99100 101

QVGF/8'
Over-all characteristic

Fig. H,14c. Stage matching for a multistage turbine.

work by the later stages is a phenomenon which must be taken into
account in design. Any greatly increased pressure ratios that take place
in the final stage lead to supersonic flow relative to the rotating blades,
eventually leading to limiting loading conditions and very low efficiencies
(Art. 7 and Fig. H,14a).

Very similar considerations apply if the blading is analyzed on a
row-by-row rather than stage-by-stage basis (27,281. Curves similar to
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2.5.

0

2.-o

0 A

10 1 2 3 A 5 6 7

Over-all pressure ratio

Fig. H,14d. Off-design operation of a multistage turbine.

those of Fig. H,14c will then depict the relation between the relative

pressure drop p0 0/p2 and the referred flow Q v0/86*O for each blade row.
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SECTION I

THE RADIAL TURBINE

WERNER T. VON DER NUELL

In the field of water turbines it has long been common practice to select
the turbine wheel ,onfiguration dependent on the characteristic power
supply factors (flow rate per time unit and pressure head), i.e. dependent
on specific speed considerations. The Pelton turbine with jet nozzles and
the typical buckets for very low speed, the Francis type with a radial or
semiradial wheel and, often, variable nozzles for medium speed, and
the Kaplan type with a propeller-like wheel for highest specific speed
values are the significant representatives. Single-stage units are the
rule.

With steam and gas turbines, the picture is different. The majority
of such turbines are of the axial flow type and multistaging, partial
admission, and other means have been used to arrive at practical
solutions. Around the turn of the century radial steam turbines [1,
Fig. 551, 741, 743] were introduced, but their utilization remained very
limited.

In the last two decades intensified development of gas turbines has
revived the search for new design approaches in an effort to simplify and
otherwise improve turbine construction and performance. A thorough re-
evaluation of the merits of radial turbines' for compressible fluids has
occurred and configurations very similar to radial pumps for gases and
air have thus begun to become of practical significance. This type of
radial turbine (both centripetal and centrifugal) will be dealt with in the
following, mainly for single-stage units. Although the principles discussed
can easily be applied to multistage arrangements, only very limited ex-
perience with multistage units of these types is available.

For reasons of simplicity and space, restriction to the use of the so-
called one-dimensional flow theory [21 must be accepted here. This sim-
plification, while of stronger influence in the design of compressors for
higher pressure ratios, is rather satisfactory for radial turbines with pre-
dominantly accelerated flow, as practical results have shown.

IBirmann selected the diagonal flow type, such as that used in De Laval turbo-
chargers; von Ohain used a Francis-type wheel in the first Heinkel aircraft gas turbine.
The author concentrated on developments with the simplest turbine wheel, the 9o
type, now in use and in production in very large numbers.
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CHAPTER 1. IDEAL FLOW THROUGH

A RADIAL TURBINE

191. Velocity Triangles. In a "radial turbine" the direction of the
flow of the working substance is predominantly radial, either inwardly
(centripetal), i.e. toward the axis of rotation, or outwardly (centrifugal)
through a rotating cascade of blades arranged around the center in a
circular fashion.

Fig. 1,1 illustrates a radial turbine blade system of the rotor blades
proper and a surrounding stationary nozzle ring with vanes. Moving with

I f

Fig. 1,1. Blading of a radial turbine.

the wheel, one would observe the velocity of the flow relative to the ro-
tating blades, i.e. the relative velocity W; whereas, while at rest in rela-
tion to the rotating wheel, one observes the absolute velocity V resulting
from the vectorial addition of W and the peripheral velocity U as shown
in the so-called ve!ocity triangles. The blades of the rotor deflect the flow
from the approaching to the leaving direction, thus producing a torque.

Assuming the flow filaments to be congruent and proceeding parallel
to the surrounding surfaces, the relative path of a gas particle is given by
the blade shape I-II, while the absolute path has the shape Ill-Il.

1,2. Specific Blade Work. The amount of work theoretically ex-
tracted by the turbine wheel from each pound of gas, H. (ft lb/lb), repre-
sents the difference of the energy contents at the entrance to, and the
exit from, the blading and is called "head." This head (change in enthalpy
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Fig. I,2a. Calculated theoretical characteristic values for radial turbines as
functions of the inlet blade angle.

or "specific theoretical blade work") can easily be determined through the
"moment of momentum" consideration [21 to be

gHt = UIVO, - U2VO, (2-1)

with V. being the circumferential component of the absolute velocity of
the flow. Naturally, H, can be divided into a portion H., representing the
change in static pressures, and a portion Hd = AV1/2g, representing the
change in absolute velocities or dynainic head, that is

H,= H. + Hd (2-2)
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If the flow at the exit from the turbine blading is to leave the wheel
along the shortest possible path, the absolute velocity must be perpen-
dicular to the peripheral velocity, i.e. at = 90, which means V., = 0,
and thus,

gH, = U1V,, = qU? (2-3)
(Different outlet conditions, resulting in positive or negative V., values,

1. 1.0I
U1=V' Iq

0.8

R

0.6

H ,

0.4

S..

'50 70 90 110 130

13', degrees
Fig. 1,2b. Calculated theoretical characteristic values for radial turbines as

functions of the inlet blade angle.

obviously decrease or increase the H, value and must be accounted for
accordingly.)

The blade angle #1 theoreticAlly can have any value 00 < 01 < 180*.
Its influence can be demonstrated through changing Eq. 2-3 by means of
Vs, = U, - W, cos 01 into

gHt - U,(U - W, cos 'h) (24)

demonstrating that, for a given value U, of the tip speed, H, increases
with increasing 0. Fig. 1,2a and 1,2b illustrate this in principle for two
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different ratios of tip speed and meridional velocity, as well as the corre-
sponding changes in the static and dynamic heads as functions of the
blade angle 01. (For better comparison, Fig. 1,2a and 1,2b are based on
identical velocity triangles at the blade exit. Fig I,2c, shows the type of
blading.)

1,3. Turbine Wheel Reaction. The reaction of a turbine wheel is
defined as the ratio:

static head of wheeltotal head

which also means that R -0 if the static pressures at the blade inlet and
outlet are equal. In line with the above,

R = = 1- (3-1)

H, H, (1

With as - 900 and, for simple demonstration, assuming V,, V, = V2
it can be written that

2gHd, -V = V - V,, = V,

resulting in
V.'

R = 1 -2U (3-2)

It is necessary and common practice to differentiate between turbines
with different degrees of reaction. For the special case of = 90, as
900, there is R = 1; while with Vs, = 2U1 there is R = 0, characteristic
for the so-called impulse-type turbine. Fig. 1,2a and 1,2b show clearly 2

that small #I values result in a higher degree of reaction than do larger
01 values which in turn, however, give higher H, values for a given tip
speed. The decrease of R with increasing 01 results from the fact that the
discharge velocity from the nozzle vanes increases simultaneously, thus
requiring an increasing portion of the available head.

For centripetal turbines the magnitude of the influences discumsed
can be demonstrated easily by showing three typical wheel blading
arrangements, Fig. 1,3a t31, for given equal values of the head, the
through flow, and the number of revolutions per unit time. The latter
condition explains the difference in diameter which is proportional to the
tip speed required.

Attention is invited to the important fact that even though the
blading systems illustrated assume radial inward flow, the general equa-
tions have no such restriction as long as inlet and outlet conditions are
used properly, as shown for a centrifugal turbine in Fig. 1,3b.

Each and every point of the curves represents operation at the design condition
hecause one (and only one) set of velocity triangles applies to each point.
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1,3 TURBINE WHEEL REACTION

Fig. 1,2c. Centripetal turbine wheels with ai-900 and equal outlet angles.

Fig. 1,3a. Three turbine wheels for equal head, through flows, and number of
revolutions with equal blade outlet angle.

NN,/

Wheel Nozzl
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1,4. Theoretical Efficiency. In addition to the energy transfer mat-
ters discussed so far, it is necessary to study the influence of the various
configurations on the efficiency. It must be realized that as long as the
exit velocity V2 has, of necessity, a finite value, some of the energy avail-
able to the turbine wheel has not been converted into mechanical work.
In order to even theoretically extract the specific blade work H, from the
gas, the head available to the turbine must be greater by a head corre-
sponding to the exit loss. Thus the theoretical efficiency, by definition,
ignoring all other losses (friction, leakage, etc.), can be calculated from

2gH, 1 (4-1)
't 2gH, + V1 1 + (V1/2gH,)

and, compatible with the assumptions, has been included in Fig. 1,2a
and I,2b.

CHAPTER 2. REAL FLOW THROUGH

A RADIAL TURBINE

1,5. Deflection and Friction. The actual conditions of flow through
a turbine, as contrasted to the assumptions made above, can be accounted
for in some of the equations discussed previously. Basically, the actual
deviation of the flow angles from the blade angles requires a larger de-
flection of the flow (or larger turning angle) than results from the "theo-
retical" consideration [1,2,8,41. If this angle increase is not provided for,
the energy output effected will be smaller than the value calculated. This
influence can be held relatively small for centripetal turbines with diam-
eter ratios D,/D 2 > 1.5 and a reasonably great number of blades.

The friction losses resulting from viscous flow can be accounted for
through the introduction of loss coefficients, e.g. by a method similar to
the classical method used for steam turbines for decades [1]. This method
is simple and has shown satisfactory agreement with test data [5]. One
of the physical effects of viscosity, flow separation, occurs especially in a
decelerated flow and upon drastic changes in direction or magnitude of
the flow velocity. Some dead area filled with eddies results from such
separation as well as from the blade thickness. This phenomenon causes
a decrease in effective flow area, i.e. an increase in meridional velocity
which counteracts the influence of the lack of deflection. Thus it becomes
understandable why, in many cases, simplified methods [5,6] are quite
acceptable as a design basis. When the "cascade solidity" becomes small
a more correct calculation of turning angles or flow deviations may be
necessary [2].
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1,6. Turbine Head, Efficiency, and Other Characteristics. For
this presentation the turbine is assumed not to have provisions for gas
cooling while expanding, so that the reference equation for the change of
state of the gas is that of the adiabate. For a pressure pi. and a gas tem-
perature Ti. at the turbine inlet and a pressure p.. at its exit,

..d = 'yIaT.I- (-x
represents the energy available per pound of gas. Vo is introduced as

0.9 --

TIp 0.8 _

! !For [1 90'i

0.7-

0.4 0.5 0.6 0.7 08
V

Fig. 1,6. Calculated influence of nozzle angle on peripheral efficiency (61.

head velocity. The gas velocity at the nozzle throat, with p accounting

for friction loss and with a reaction R, is

V1 = , V/2gHd(l - R) = VpVo /i - R (6-2)

A peripheral or blading efficiency, i.e. the efficiency not accounting for
disk friction and mechanical and leakage losses, can be defined as

effective specific blade work = 2(U 1 Vo, - U2V,,) (63)
adiabatic head V2

Introducing as the characteristic velocity ratio
U'LT= -(6-4)

and
V, jV, (6-5)

Fig. 1,6 shows calculated values [16 of i)p as a function of the velocity
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ratio v, with the nozzle angle al as parameter. Although this calculative
approach is too much simplified, the results show the trends clearly and
are essentially in agreement with applicable test data.

In addition to the friction in all flow channels, there are other inner
losses influencing the energy transfer, such as fluid friction on the disk
and/or the shroud of the wheel and internal leakage or bypass losses,
because a certain amount of the gas, such as direct heat loss to the out-
side, does not participate in the normal energy transfer. These losses
influence the temperature of the gas and find expression in the inner
efficiency:

At, (6-6)

This value can obviously be measured via temperature and pressure sur-
veys at a turbine in operation. External leakage and mechanical losses
can be determined and accounted for with the ^,ommonly accepted defi-
nitions. Also, the polytropic efficiency [2, p. 4421, helpful in compressor
calculations, can be useful when comparing turbines. The over-all or total
efficiency, of course, is

measured power output . 550P [ hp (6-7)offi power input =wH. I lb/sec X ft lb/lb I 67

where P is the power out and w is the weight flow through the turbine.
With a2 = 90° , i.e. Ve, = 0, the general turbine equation can be

written as
gHs = UV, cos at

With reference to Eq. 4-1 one can write

V1 + 2gHt = v2gH.A
which with

V2 = V /2gH-.. = rVo (6-8)

leads to a "velocity ratio"

U , = t 1 _ (6-9)
V0  vi 2cosal - R (6-)

A numerical evaluation of more average values for centripetal turbines
with P, approximating 900 results in values for v from 0.68 to 0.73 for the
best inner efficiency. The head coefficient qd, defined by

q.dU!= H.d = Vo (6-10)

and the velocity ratio are obviously related by

32 (6-l)

( 532 )



1,7 CALCULATION OF THE MAIN DIMENSIONS

For best over-all efficiency, it is generally advantageous to design for a
P value somewhat smaller than calculated, in the manner shown.

1,7. Calculation of the Main Dimensions. Assuming the normal

case of prescribed inlet and outlet pressures and inlet gas temperature,

D2

dh

Fig. 1,7a. Centripetal turbine with 90° biling.

Eq. 6-1 serves to determine Hd . The discharge volume flow results from
Eq. 6-7 -6 : 

5 P T .( -a
p-X H A,p ..

wherein the gas temperature at the wheel exit,

T.x -- T, - i t.a At.4
with

The selection of a tolerable discharge velocity, i.e. r" (Eq. 6-8), establishes
the wheel discharge area (Fig. 1,7a)

I - (7-1b)

V,.,,4

The wheel inlet diameter is D, bneD2 with m values dependent on the
type of the wheel blading. For 90 wheels (Fig. ,7a), diameter ratios in
the range from m 1.4 to 2.2 are quite common with both larger and
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smaller values possible in extreme conditions and dependent upon turbine
requirements. The tip speed required for a given Hd depends on the
choice of blading and the efficiency-velocity ratio relationship. If D1, P,
and the wheel rotational speed n are not compatible, different assump-
tions and/or blading are indicated, or a multistage or a multiflow arrange-
ment may be required. No general method for the calculation of the most
favorable number of blades as functions of turning angle, diameter ratio,
etc. has been established sufficiently firmly. Large numbers of blades
(Fig. 1,7b) obviously cause higher flow area restrictions and more fric-
tion, whereas very low numbers permit greater deviation from the energy

NNozzle
ring b~

Fig. 1,7b. Centripetal turbine with cantilever-type blading.

transfer calculated on the basis of the one-dimensional approach. With
90 wheels of from 5 to about 15-in. diameter, good efficiencies have been
obtained with blade numbers between 10 and 20.

With respect to the blade angles at the wheel outlet the desired dis-
charge velocities and the circumferential velocities determine these angles
as functions of the radii. For discharge conditions characterized by a2 =
900 and V2 being constant along the radius, the blade angle 02 varies
according to

r tan 02 = const (7-2)

The throat area At, = Eab (Fig. I,7a and I,7b) needed for the mass
flow rate wo is

A, pW (7-3)
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with p = coefficient of contraction, dependent greatly on nozzle configu-
ration, and the value v [1; 7, Fig. 251 defined as

'I' 1 Pa; (7-4)

with p./pi representing (p nozzle out)/(p nozzle in) and resulting from
the introduction of the critical gas velocity into the continuity equation.

,

Fig. 1,7c. Volute-type turbine scroll.

The pressure ratio across the nozzle ring results from

H.. = (1 - R)Hd T. (- (7-5)-Y - I _ \P.1/

If the turbine inlet casing is of the volute type (Fig. I,7c), the dimen-
sioning of its cross-sectional area can be based on the flow with constant
angular momentum

rV, = const = K (7-6)

At a station (Fig. 1,7c and I,7d) defined by p, and r, the flow rate is

= f' VdA = rVe f" b (7-7)

For the common single inlet volute with P = 360', the flow area at each
station can be calculated from

i (degrees) -60rVoQ Jb dr

after b as a function of r has been selected for a design.
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By proper modification, compressibility and flow friction can be taken
into account. This complication may be indicated for high Mach number
flow conditions or very rough volute walls.

The inlet angle a,. to the nozzle ring, Fig. I,7e, should be adapted to
the volute out-flow conditions in order to avoid losses through excessive
deflection. With V, calculated by means of the continuity equation and
V. from the angular momentum equation, the flow angle (Fig. 1,1) results
from tan a = V/V,.

Properly matching the nozzle area, the shape of the volute and the
angles of the nozzle vanes complete the design of the flow areas in the
turbine inlet housing.

d r

rxI -4

Fig. 1,7d. Volute-type turbine scroll.

Special attention is required with respect to the critical pressure ratio
and the critical velocity whenever dealing with turbomachinery for gases.
At high pressure ratios, the jet deflection (Prandtl-Meyer effect [4]) at
the nozzle exit should be taken into account. Humidity effects may require
special attention in refrigeration turbines. Otherwise, common nozzle de-
sign knowledge [1] is, of course, applicable. However, the spacing or radial
distance from the trailing edge of the nozzle ring to the inlet edge of the
wheel blades is more or less a matter of free choice. Although tests re-
garding the influence of this dimension are known to have been conducted,
no results are available for publication. It has been recognized, though,
that rather large radial distances, say up to one eighth of the wheel diam-
eter, may show little, if any, loss in over-all turbine efficiency. Naturally,
this greatly depends on the flow pattern leaving the nozzle ring and the
design of the flow passages. Studies regarding the "sink flow" should be
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helpful. Also, mechanical considerations, such as blade excitation, erosion,
etc., may influence the spacing.

Now, one may ask whether nozzle vanes must be used. Compressors
and pumps with vaneless diffusers and volute-type scrolls as diffusing

Fig. 1,7e. Nozzle vanes for centripetal turbine.

means are well known. They offer certain advantages such as a flat head
vs. volume curve and less tendency for pulsation. A reversal of the flow in
such compressor configuration represents a turbine without nozzle vanes.
The calculation of such a turbine offers no special difficulties. For sim-
plicity, the gas is considered to be a perfect, nonviscous gas and the side
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walls of the vaneless nozzle ring are assumed to be perpendicular to the
axis of rotation and parallel to each other with an axial distance b. The
thermodynamic and flow conditions to be observed are

pvy - const (isentrope)

rV, = K =const (free vortex)

pAV = const (continuity)

2g4Hd = Ac' = 2gcATJ (constant energy)

With x and y representing two radii in the vaneless ring, and with V, and
V. for the meridional and the tangential components of the absolute
velocity,

pV1 = P

rV#, = rVe,

bxrxVr.p = byry Vrp1
V2 + V2 - (V, + V,) = 2gJc,(Ty - Tx)

Combining and rearranging leads to

2,gv + n.[ +~t~~ + pv, [( IyV, ~1] 0 (7-.8)

permitting the calculation of the gas velocity at any radius. With V,
f(r) and rV, = K, there is tan a = rf(r)/K. For a centri-angle b included
between the radii to two points representing the beginning and the end
of a flow filament between subject radii, there is, per geometry, tan a =
dr/rdO or transformed do = Kdr/r'f(r). Thus the path of a gas particle in
a vaneless ring with parallel side walls is described. Considering a sink
flow (centripetal turbine) of a compressible substance, one finds that the
fluid leaves the ring at an angle steeper than that with which it entered
the ring. Accounting for viscosity the deviation from a logarithmic spiral
([1, representing the "ideal" sink flow, decreases somewhat.

1,8. Design of Blades. Curved blades in the radial portion of a wheel
are sometimes designed as a single arc (Fig. I,8a). Describing the sum of
the two blade angles from radius MB, connecting A and B, extending to
the intersection at C, drawing a perpendicular line bisecting AC, the
crosspoint O represents the center for a single-are blade with 01 at the
inlet and 0, at the outlet (]. If, however, certain functions between blade
thickness, relative velocity, and radius are prescribed, the blade shape
can be calculated. Combining (see Fig. 1,8b and I8c) sin A = V,1W,
d = .D and r = 1(I - c) with the continuity equation VorDb = rQ,
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Fig. 1,8&. Single-arc blade.

Fig. 1,8b. Notations for calculation of blade ghape.
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there results after rearrangement

$in 7.s _.Q

r -bDW

It can also be written that tan - CB/AB - dr/rd p (Fig. I,8d). The
length of the blade measured in the central angle V is obtained by inte-
gration between the inner and outer diameters via

S(degrees) -dr

For the numerical evaluation, a graphical integration can easily be used.

Fig. I,8c. Area reduction through blade thickness.

The design of exducers for turbine wheels is very similar to the
methods used for "inducers" of impellers of centrifugal compressors. For
stress reasons, cross sections of exducer blades may show a taper com-
parable to axial blades. Cantilever-type blading (Fig. 1,7b) is designed
with methods known, for example, from Ljungstroem turbines [1].

Where radial wheels are required to operate at high tip speeds and
temperatures, semishrouded wheels or the "star type" normally have to
be used because of the stress problems connected with front shrouds.
Efficiency-wise, fully shrouded impellers may be superior to semishrouded
and unshrouded wheels, but a fully satisfactory method to calculate
stresses in radial wheels has not been published. In applications with
great temperature gradients along the radius of the wheel, significant
thermal stresses are superimposed over the mechanical stresses. The re-
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suiting stress analysis is equally difficult and time-consuming, but very
essential even if only based on approximate methods. With highly loaded
wheels, the temperature change along the disk can become very great,
thus possibly leading to compressive stresses where, with no thermal
gradient, tensile stresses would be the criterion.

CE

Fig. 1,8d. Notations for blade calculation.

1,9. Adaptation of Power Output and Energy Supply. In pub-
lications around the turn of the century, it was stressed that a very im-
portant factor in favor of radial-type turbines was the simplicity with
which the most economical load adaptation over rather wide ranges could
be accomplished.

Instead of controlling the output by throttling or by partial admis-
sion, the variable area nozzle with individually pivoted nozzle vanes, which
has been widely accepted for use in water turbines, has been demonstrated
to be equally favorable for centripetal turbines for compressible fluids as
long as the special requirements of compressible fluids with very high, i.e.
up to sonic, velocity are carefully observed in the turbine design. For
purposes of demonstration, Fig. I,9a shows the first very simple arrange-
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Pivot points

Front shroNdo
zzle v a ne s

a t moving mechanism

Weel

Fig. 1,9a. Variable area nozzle with pivoted nozzle vanes for small,
simple centripetal gas turbine.

0

E L60 0

E

4- 6

40

.Y -..... Water
-20 . . .

) Air

0

0 0 80 160 240

Head, per cent
Fig. 1,9b. Comparison of test results observed with centripetal

turbines for water and air [8].

ment known to have been used up to high temperatures in a small gas
turbine over twelve years ago. Test results shown in Fig. I,b and I,9c [8]
can be considered representative of performance characteristics easily ob-
tainable with centripetal turbines (900 turbine wheel with exducer) and
fairly simple nozzle arrangements.
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160 F -
Nozzle vane angle 1

140 5f 8 Y

120 L .. -- , 18 240

404

20-

C I I

0 25 50 75 100 125 150 175
Inlet volume flow, per cent

Fig. 1,9c. Performance characteristics of centripetal air turbine

with variable area nozzle.

1,10. Multistage and Multiflow Arrangements. As is the case
with almost all types of turbomachinery, head or enthalpy drop which
can be used in a single rotating blade system is proportional to the square
of the angular velocity. The determining stresses resulting from centrifu-
gal forces are equally dependent on the square of the angular velocity.
This means that the stresses limit the possible head per blading row. A
general statement with respect to the maximum possible head per stage
can not be made because the very wide range of velocity ratio vs. effi-
ciency may or may not be utilized, dependent on the turbine require-
ments. Moreover, the strength of materials available is continuously
being improved. Limitations can also result from gas dynamical problems
such as sonic velocity.

Whenever a single-stage machine car~not handle the head supplied,
multistage arrangements are indicated. Fig. I,10~a shows in principle a
simple multistage centripetal turbine arrangement consisting of single-
stage elements combined in one housing on one shaft,. The two-stage
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arrangement shown in Fig. I,lOb combines a centripetal first and cen-
trifugal second stage, offering certain attractive features with respect to
compactness and the design of housing and bearings. Another combi-
nation of two stages, both of the centripetal type (Fig. I,10c) appears

Fig. I,lOa. Multistage arrangement.

Fig. I,lOb. Two-stage turbine with centripetal and centrifugal stage.

feasible, for example, for gas turbines with a free power turbine. In such
a unit, one stage would drive the compressor of the gas generator, whereas
the other one delivers shaft power.

Similarly, the multiflow arrangement, Fig. I,lOd, can be used when the
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through flow required exceeds the flow capacity of a single-wheel outlet.
Blading rows similar to Fig. I,7b have been used successfully since the
turn of the century in the Eyermann turbine, a simple multistage radial
turbine with outward flow. The blading consists of alternate rows of
stator vanes (nozzle rings) and rotating blade rows. It is not difficult to

Fig. 1,10c. Two-stage turbine arrangement.

Fig. I,lOd. Multiflow arrangement.

use congruent bladings for both nozzles and wheels. Combinations of
impulse and reaction stages have been used since about 1900, and the
advantages of using multistage arrangements permitting low rotational
speeds were recognized early. The next natural step was the Ljungstrom
turbine [1] which differs from the Eyermann turbine in that there
are no stators; both rows of blades rotate in opposite directions, thus
producing a higher head drop in a given space for the same angular
velocity.
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1,11. Brief Comparison between Single-Stage Axial and Radial
Turbines. One of the commonly known methods of determining the
suitability of a radial or an axial turbine wheel (or compressor impeller)
for a given problem statement is to determine the specific speed charac-
teristic which, for a certain rotational speed, gives best efficiencies for the
given pressure ratio and inlet temperature of the working medium. This
specific speed characteristic has been presented many times in turbo-
machinery literature [2,3,9]. Another way of illustrating the typical char-
acteristics of the axial vs. the radial wheel configuration is to compare

D. D D,

-b-

Di7

Fig. 1,1Ia. General dimensions for axial- and radial-type turbines.

characteristic through-flow areas. With the relationship of the hub ratio
h = Di/Do of the axial wheel (Fig. 1,11 a) and the diameter ratio m of the
radial wheel and with y = AL/Ao representing the ratio of inlet to outlet
area of the radial wheel and assuming equal outer diameters, i.e. D. = D1,
through simple arithmetic one finds

D'(1 - h' ) y DI)2

which, when simplified, leads to
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The evaluation of this equation, Fig. 1,11b, shows that an axial impeller
of a hub ratio of 0.7 and with the conditions outlined above corresponds
to a diameter ratio of about 1.4 for a radial wheel with y = 1. Assuming
that a diameter ratio m = 1.4 is considered the low reasonable limit for a
radial wheel, Fig. 1,1 lb shows that, for example, an axial wheel with a
hub ratio of 0.6 cannot be replaced by a radial wheel with a y value of
about 1. Whereas a hub ratio of, say, 0.9 is not considered particularly
desirable in an axial wheel because of the bypass or leakage losses, over

2.6

2.2 --

M 1.8
-S

0

1.0>

1.0 0.8 0.6 0.4

h
Fig. I,lb. Chart for comparison with Fig. I,lla.

the entire range from y = 0.7 to y = 1.3 the diameter ratio required for a
radial wheel is quite reasonable or even favorable.

With regard to the possible or acceptable tip speeds for axial and
radial wheels, all kinds of arguments have been listed. For simple or basic
considerations without conducting a very elaborate design and stress
study and under otherwise comparable conditions (safety, temperature,
material), a 900 radial wheel lends itself to somewhat higher tip speeds
than an axial wheel. If an axial wheel machined integrally in one piece
with all blades is assumed for the comparison, there is little reason to con-
sider one or the other superior regarding maximum permissible tip speeds.
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1,12. Performance Data. As pointed out elsewhere 181, the efficiency
characteristics of centripetal turbinek for compressible fluids are quite
similar to those known for water turbines, which is demonstrated by a
comparison of test data obtained on two such turbines (Fig. I,9b).

The range of efficiency versus head coefficient obtained with numerous
types of centripetal turbines with wheel Mach numbers around 0.75 (de-
fined as the ratio of the tip speed and sonic velocity of the gas under inlet
conditions) is shown in Fig. 1,12a based on test data from various units
with small wheels (15-in. diameter and less). Single-stage centrifugal com-
pressors (outlet blade angles between 70 and 900) when operated as air
turbines with reversed directions of flow and rotation have shown similar
results. As must be expected, the maxim ;m efficiency moves toward

3, <900 =900 >900

o 80

C
W 70 70. . . .

0- 50

C 0 1 2 3 4 5

Fig. 1,12a. Efficiency vs. head coefficient curves for several
centripetal turbines with #I ,: 900.

smaller qd values for turbine wheels with small # (Fig. 1,1), whereas the
cantilever-type blading (Fig. 1,7b) produces its range of maximum effi-
ciency at higher q.A values.

Typical test results obtained with 90*-type centripetal turbines, 4 to
8-in. wheel diameter, with pressure ratios up to about 4:1 and inlet tem-
peratures up to around 13000 (Fig. 1,12b), and over a range of head co-
efficients from q.d = 0.5 to q.d = 2.5 show turbine efficiencies above 0.65
and up to about 0.88 for the best velocity ratio to be quite common.
These test data do not represent the highest values known to have been
obtained. The band indicated over the entire range at the upper limit
represents better nozzle configurations tested and at the lower limit the
simpler nozzle configurations tested.

By calculation alone, the degree of reaction of a radial turbine can be
approximated (5,61 in good agreement with test results (Fig. 1,12c) over
a wide range of head coefficients and various turbine configurations. The
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essentials for the calculation of the degree of reaction are fairly simple and,
generally, the results are satisfactory for dimensioning a turbine design.

In order to give some first indication about the influence of face clear-
ance, i.e. clearance between the blade edges and the stationary shroud of

0).9O.8 - __ _

0.7 ---

0.6-!

0.5 1.0 ).5 2.0 2.5
qod

Fig. 1,12b. Measured efficiencies of small centripetal
turbines of the 900 type.

0.7

R o.5 --

0.4

0.5 1.0 1.5 2.0 2.5
qod

Fig. 1,12c. Measured values of degree of reaction of small900 centripetal-type turbines.

the housing, Fig. 1,12d shows over a wide head coefficient range how
much the efficiency changed in a very simple vaneless centripetal tur-
bine with a semishroudcd wheel when increasing this clearance 8 from a
value Di/a = 300 to one half of this ratio of outer wheel diameter D, to
face clearance a. Whereas in the range of maximum efficiency the drop in
efficiency shown might be objectionable, its influence almost disappears
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if operational conditions require the turbine to work at higher head
coefficients.

When choosing the most favorable blade configuration of a radial
turbine for the given energy supply and output conditions, inner adia-
batic efficiencies well above 80 per cent (and approaching 90 per cent)
have been obtained consistently with wheel tip Mach numbers up to
approximately unity and down to very small wheel dimensions, e.g. 3 in.
and less. Such performance and the simplicity and the ruggedness ex-
plain why the simple 900-type centripetal turbine has gained so fast in
practical importance.

0.8

o7

0.6

0.5 1.0 1.5 2.0 2.5 1.0

qad

Fig. 1,12d. Influence of face clearance on efficiency of
small 900 centripetal turbines.

1,13. Examples of Centripetal 90-Degree-Type Turbines in Pro-
duction. Data published and presently known to the author indicate
that radial turbine wheels of the types described and used in production
turbines range up to 20 in. in diameter. It has been stated that the radial
turbine only lends itself to small sizes. Obviously this is not so. Certain
desirable manufacturing techniques for big radial wheels may not have
been developed fully. Just as axial turbines with wheel diameters as small
as 1 inch and as large as, say 15 feet, are being used, there is no absolute
size limit with the radial wheel configuration as long as the problem state-
ment and its relationship with specific speed characteristics lead to a
favorable wheel configuration of the radial type. Little, if any, real practi-
cal experience exists with multistage arrangements although some appear
quite feasible.

Typical examples for gas turbines with radial turbines produced and
used in large numbers for secondary aircraft power have been published
[7,8,9,10,111. More recently, developments have been indicated with a
centrifugal compressor impeller and a centripetal turbine wheel manu-
factured in one piece, Fig. 1,13, both for auxiliary gas turbine power units
and for exhaust-gas turbochargers.

The possibility of power control through variable area nozzles is being
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utilized in centripetal turbine units for air and gas (see Plate 1,13a). Al-
though such developments have already resulted in practical products,
further simplifications appear promising and feasible.

While the utilization of the simple 90*-type centripetal turbine is
rapidly increasing, varied configurations of the wheel itself, comparable
to the centrifugal compressor development [9], can be observed (Plate
1,13b). The explanation of why such different shapes came into being is

Fig. 1,13. 200-horsepower gas turbine with centripetal turbine and centrifugal
compressor. (W. H. Allen, Sons, and Co., Ltd.)

to be found in stress, weight, and especially manufacturing problems.
The progress in the precision casting of heat-resistant alloys of satis-
factory ductility gives the designer great freedom in the blade-shaping.
Further advancements in the stress analysis, in the aerodynamical knowl-
edge about the centripetal flow, and in precision-forging techniques can be
expected to lead to new shapes of radial wheels differing more and more
from the common-style centrifugal compressor impeller.

Whereas, to some degree, the emphasis may have been on radial
wheels with straight 900 blading in the radial part, backward and/or
forward curved blading is quite feasible for certain applications. N&uturally
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the fact of the curvature in itself can impose stress problems and manu-
facturing problems; however, where precision-cast materials have suf-
ficient strength for the tip speeds required, radial wheels with curved
blading can have significant merits. Notable examples are some super-
chargers for aircraft cabin pressurization and air conditioning (The Garrett
Corporation). In this system, the first compressor stage which is mechani-
cally driven by the main power plant of the aircraft, as well as the second
compressor stage and the turbine which drives it, all have the same radial-
type rotor and the same housing, except that the diffuser vaning for the f
compressors is different from the nozzle vaning of the turbine. In all three
applications of this radial configuration of small size, the unit efficiencies
are above 80 per cent.
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SECTION j

THE CENTRIFUGAL COMPRESSOR

EDWARD S. TAYT OR

J,l. Introduction. Elementary analysis of the centrifugal compres-
sor explains many of its characteristics and has the advantage of being
easily comprehended. The usual elementary analysis involves a one-
dimensional approach, that is, all fluid properties are assumed to be
constant over certain flow cross eections. These cross sections are con-
veniently taken before and after the rotating wheel, as well as at the
inlet and at the discharge of the entire machine. In the case of machines
where guide vanes are used ahead of the impeller, the flow at this point is
no longer one-dimensional, but is easily handled by an extension of the
analysis.

J,2. The Energy Equation. Application of the first law of thermo-
dynamics to a fluid flowing steadily through a compressor gives the result

P=m Jh2+L22- Jh,+ I0 + JQ (2-1)

where P is the power supplied to the compressor, in the mass of fluid
entering the compressor in unit time, h, the enthalpy per unit mass of
fluid entering,- h: the enthalpy per unit mass of fluid leaving, V, the
velocity of fluid entering, V 2 the velocity of fluid leaving, Q the heat lost
from the fluid between the points of measurement of the entrance and
exit conditions per unit mass of fluid flowing, g a dimensional constant
numerically equal to the acceleration produced by the action of a unit
force on a unit mass, and J is the mechanical equivalent of heat.

If it is assumed that the fluid is a perfect gas with constant specific
heat c,,

P = m[Jc,(T2 - T1) + JQ] (2-2)

where TO and T0 are respectively the stagnation temperatures at the exit
and the entrance. Stagnation temperature is defined by the relation

V2

T' T + VT--T 2gJc-

In accordance with the one-dimensional simplification, it is assumed
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that the stagnation temperature at the entrance (and at the exit) is uni-
form across the cross section where it is measured.

In high capacity compressors such as those used in turbojet engines,
the quantity Q is negligible compared to c,(T2 - TI), resulting in a fur-
ther simplification of Eq. 2-2.

P = mJc,(T2' - TO) (2-3)

J,3. The Momentum Equation. Consider the flow through a rotat-
ing impeller as indicated in Fig. J,3a. It is assumed that the flow at cross
sections a and b is axially symmetric.

Under this assumption it is possible to derive Euler's turbine equa-

,

7\7

Fig. J,3a. Flow through a centrifugal impeller.
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tion in the following form from the application of Newton's second law
to a thin annular stream tube passing through the impeller:

ar - &m(rbVe, - r.V0.)/g (3-1)

where & is the external torque applied to the fluid flowing in the stream
tube between sections a and b, am the mass flowing per unit time through
the stream tube, rb the radius at section b, V., the tangential component
of the fluid velocity at section b, r. the radius of the stream tube at sec-
tion a, Vs. the tangential component of fluid velocity, and at section a.

If it is further assumed that the velocity distribution at section a is
such that r.V,. is independent of radius (free vortex distribution) so that
roV. = rVs, and that the tangential component of velocity at section b
is uniform over a cylindrical cross section of constant radius ri, it is possi-
ble to integrate Eq. 3-1 to obtain the external torque acting on the fluid

T = m(rV,, - rV,,)/g (3-2)

where m is the mass flow per unit time passing through the wheel, r, is
the radius of the inlet pipe, and V., is the tangential velocity of the fluid
at radius ri, sectiun a.

Assuming that the tangential friction between the fluid and the hous-
ing is negligible, the external torque applied to the wheel shaft is equal to
the torque r applied to the fluid by the wheel. Thus the power P applied
to the wheel shaft is given by

P = mco(r2V,, - r1 V,)/g (3-3)

where w is the angular velocity of the wheel.
If Eq. 3-3 is combined with Eq. 2-3 the following relation is obtained

T, - T_ U2 rV,__r ( V., ]

TO  gJcT ° [ U2 J (3-4)

where U, = riw is the tangential velocity of the wheel at radius ri.
Note that the veiocity of sound a corresponding to the inlet stag-

nation temperature is given by
a°2 = ('2 - 1)gJcpT' (3-5)

where - is the ratio of specific heats. Then Eq. 3-4 becomes

T0-TO -- ( )2 V) - (3-6)
TO4I U2  r) 1

If the inlet circulation is constant with the radius, there will be an
increase in tangential velocity of the fluid toward the center of the wheel,
while the wheel velocity increases from the center outward. It is clear
that at any operating condition there exists a radius ri where U1 - Ve,.
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Eq. 3-6 may thus be written

T O --T o . V # 1 _I"; 'S = ( n - 1)r ' , (r,/] (3-7)

Where the quantity IT.,, called the "Mach index" (sometimes called
the compressor Mach number), is defined as the tip speed divided by the
velocity of sound at the inlet stagnation condition,

U2
H.,s --- a-

Note that r, is not a geometric property of the design, but may de-
pend upon the operating condition.

0.8

0.6 U. v,= u 1.2 . ..

- i r -.S 0.4 -- !,, 1.

0.2 rr -- 0.8 . .

010 0.15 0.20

m/m*

Fig. J,3b. Temperature rise in a centrifugal compressor
with 16 radial impeller blades.

If there is no inlet circulation, r, = 0. Under these conditions we
should expect that the stagnation temperature rise through a given im-
peller would depend only on the rotative speed, provided that Vo,/U2
does not vary with operating conditions. With radial-bladed impellers,
both analysis and experiment indicate that Vo,/U is a characteristic of
the design and very nearly invariant with operating conditions.

Fig. J,3b shows the temperature rise through an impeller plotted
against the mass rate of flow through the machine. The abscissa scale of
this plot is a convenient dimensionless ratio to represent mass flow. The
quantity m* is defined as the mass that would flow at sonic velocity
through an orifice having an area of irr' with stagnation temperature and
stagnation pressure the same as corresponding values at the inlet to the
compressor.

It will be noted that the actual temperature rise ratio is about 0.9
of the temperature rise ratio found by assuming V., = U2. In tests of
compressors having radial impeller blades it is invariably found that
VO, < U2. The ratio Vo,/ U2 is called the slip factor. A number of efforts
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have been made to evaluate the slip factor on the basis of the solution
of the equations of flow of a perfect fluid around the rotor blades. A re-
view of this work may be found in [1]. The simplest of these efforts is the
approximation of Stodola [], which gives for an impeller with straight
radial blades

m1 -j (3-8)

where r is the slip factor and Z is the number of blades. This approxi-
mation gives values which in general are lower than experimentally ob-
served values.

1.0

z= 16

r2/r 2

Fig. J,3c. Slip factors for radial blade compressors 181.

A more accurate analysis based on the flow of a perfect fluid around
blades having the form of logarithmic spirals is due to Busemann [3].
This derivation assumes an impeller of uniform axial depth having blades
extending from rl to r2.

The results of Busemann's analysis for straight radial blades are
shown in Fig. J,3c. At a radius ratio r/r 2 = 0 the Busemann values of
slip factor are somewhat greater than those given by the Stodola equa-
tion but still slightly lower than are generally observed in practice.
Stanitz and Ellis [4], extrapolating from two computations of compressible
flow in radial-bladed impellers by the relaxation method, suggest the use
of " - - (l.98/z). A comparison of the three values is given in Table J,3.
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Tasb Js.

Slip factor f

Number of blades Z
Stodola Buaemann Stanits

16 0.80 0.86 0.88
18 0.83 0.87 0.89
20 0.84 0.88 0.90**
22 0.86 0.89 0.91
26 0.88 0.91 0.92
30 0.90 0.92 0.93"*

* Values extrapolated to rl/r, - 0.
* Values from relaxation computation.

Busemann's analysis and Stanitz's computations both indicate that
the slip factor for impellers with radial blades is independent of the mass
rate of flow.

J,4. Effect of Inlet Circulation and Nonradial Blades. If the
inlet circulation is produced by stationary blades (inlet guide vanes)

0.7
0.6-

- 0.5
0 o.4 ....... . ..

01

O.10 0.20 0.30

Fig. J,4&. Temperature rise in a centrifugal compressor having inlet
circulation. rj - 0.275; r2 at m/m* - 0.36.

ahead of the impeller, the tangential component of the absolute inlet
velocity Vs, varies with the inlet flow. If it is assumed that the velocity
through the inlet guide vanes is low so that the flow may be assumed to bc
incompressible, then Ve is proportional to m and the relation between
(TO - T°)/T and m/m* is a linear one starting from the value at
m/m* = 0 which would be given without inlet circulation. Fig. J,4a
shows the temperature rise ratio of an impeller where r. = 0.275r, at
m/m* = 0.36.
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A similar characteristic results from the use of impeller blades which
are not radial at the impeller exit. If such blades are inclined backward
with respect to the direction of rotation, an increase in mass flow de-
creases the value of Vo,. It may be shown that here also the decrease in
temperature rise is very nearly proportional to mass flow. Forward-
curving blades result in an increase in Vs, with mass flow and a rising

Forwaord

Radial

___ Backward

Fig. .,4b. Temperature rise in centrifugal compressor, having forward-leaning,
backward-leaning, and radial impeller blades.

temperature characteristic. Typical characteristics for forward-curved,
backward-curved, and radial blades are shown in Fig. J,4b.

J,5. Effect of D~isk Friction. Ippen 15], extending an analysis by
von Kfirmfin, proposed the following expression for the fluid friction on a
thin disk running in a casing:

_ .01 pr2U (5-1)
17-(Red)i 2

where 7f is the friction torque on one side of a disk, Red the disk Reynolds
number = wr'p/iu, p the density of the fluid, r2 the outer radius of the
disk, U2 the ring speed of the disk, w is the disk angular velocity, and
ju the viscosity of the fluid.
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As indicated in [61, Eq. 5-1 checks reasonably well with experimental
results.

Assuming that the friction on the casing is equivalent to that on both
sides of a thin disk of diameter equal to the impeller diameter, Eq. 3-6
may be corrected for disk friction as follows:

T O, -
(
. - 1 ) U \t V _ I ,

r0.01331 -/,+\!.- m*+ ,~
j2v- 2. ' ' I (5-2)[(Red)'J 2 pJJ

In order to evaluate this equation it is necessary to determine p/prj and
Red in terms of known quantities. Since the friction term is small com-
pared to other terms in the equation it is unnecessary to determine its
value with great precision. Even less precision is satisfactory in the evalu-
ation of the disk Reynolds number Red.

Using for p the arithmetic average of the inlet stagnation density and
the density which would result from reversible adiabatic compression
with the temperature rise given by Eq. 3-6, and using a value of vis-
cosity corresponding to the discharge temperature, the author has found
that for ieveral single-entry high performance centrifugal machines, the
temperature rise due to disk friction is between one and two per cent of
the temperature rise given by Eq. 3-6 throughout the entire operating
range (with normal atmospheric inlet conditions). The proportion of disk
friction is little affected by the disk Reynolds number over the range en-
countered in normal operation. Evidently the proportion of disk friction
will be approximately halved in a double-entry machine.

It is interesting to note that the conditions under which high output
centrifugal machines work are such as to reduce the proportion of disk
friction loss. Small flow, backward-curved blades, and low Reynolds num-
bers all increase the disk friction compared to the total power input.

J,6. Pressure Ratio. Except for the small effect of disk friction, the
ratio of discharge to inlet stagnation temperature is independent of the
losses in a centrifugal compressor having radial blades. The ratio of dis-
charge to inlet total p ressure on the other hand must depend upon the
losses as well as upon the temperature ratio. These losses are in general
of two kinds: (1) those due directly to friction forces on the surfaces of
the rotating wheel and the stationary housing, and (2) those due to
secondary flow resulting in local velocities in undesired directions. Of
these two, the first appears to be relatively unimportant. The second
type of loss can become large when separation of the flow occurs some-
where in the maching. The problem of separation is discussed later in this
section where the various component parts of the machine are considered
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separately. For present purposes it is sufficient to consider the over-all
losses. These are usually evaluated in terms of an "efficiency." If the
machine were without losses, that is, reversible, the rise in total pressure
would be uniquely determined by the temperature ratio through the
isentropic relation

where p0 is the discharge total pressure and p0 is the inlet total pressure.
It is customary to define the efficiency of a compressor as the ratio of

the temperature rise produced by a reversible machine working between
the inlet conditions of total pressure and stagnation temperature and the
final total pressure or

PT _ (6-1)

It is clear then that if the stagnation temperature ratio is known or
can be estimated from Eq. 6-1, the total pressure ratio can be determined
if the efficiency can be estimated. It has thus far not been found possible
to improve on the rather unsatisfactory procedure of estimating the over-
all efficiency on the basis of experience with similar machines.

J,7. Components. For further study, the centrifugal compressor will
be divided into the following components: the inducer, the impeller, and
the diffuser.

The inducer. The inducer is that portion of the wheel or impeller
near the entrance which serves to produce a solid body rotation of the
fluid which is necessary to match the flow in the impeller. Inducers are
sometimes made as a part of the impeller and sometimes made as a sepa-
rate part fastened to the wheel. While it is often difficult to distinguish a
division between the inducer and the remainder of the wheel, since the
two parts function together as a unit, the distinction is convenient for
analytic purposes. It is assumed here that there is no change in radius
of any streamline passing through the inducer. With this assumption,
we may write Euler's turbine equation for an annular stream tube or
radius r passing through the inducer as follows:

6r = 6M(rbVo, - r.V.) (7-1)

where sections a and b are taken before and after the inducer.
In order to match the tangential velocity required in the impeller,

aP = 5mU2(1 - ) (7-2)
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It will be noted that the work done in the inducer at a given radius
per pound of fluid is identical to the work done by a centrifugal impeller
with radial blades (and no slip) having the same inlet conditions and
having an outer radius equal to the radius under consideration. Without
inlet circulation (Vs. = 0), the work done at radius r in the inducer is
(r/r 2)2 times the work of the impeller neglecting slip. For centrifugal
machines such as those used in high speed aircraft,

0.40 > (%'), > 0.25

where r, is the outer diameter of the inducer. Since the rise in stagnation
temperature of such machines may be 3000F, the rise in the inducer .aay
be of the order of 100°F. This is truly an extraordinary temperature rise
to expect from a single subsonic axial flow stage. Coupled with the fact
that the relative Mach number at the outer radius of the inducer is usually
high, it is not surprising to find that inducers often operate at least par-
tially stalled, and sometimes with reversed flow at the outer radius (6,7].

A somewhat different approach to the same problem results from con-
sidering the flow through the outer radius of the inducer equivalent to
the flow through a two-dimensional cascade.

If the cascade be considered incompressible and frictionless the lift
coefficient will be given by

CL 2 tana (7-3)
0 /1 + _t tan2 a

where o = blade chord/blade spacing and a = the angle between the
velocity vector at inlet and the perpendicular to the plane of the cascade.

The ratio of lift coefficient to solidity is plotted in Fig. J,7a. It will be
seen that with the usual turning angle of the inducer (700 to 500 at the
tip) the required solidity to give a reasonable lift coefficient is high.
Furthermore, the angle of turn required (= a) is also very much larger
than is considered good practice in axial flow machines. In addition the
relative Mach number at the inducer tip is necessarily high in order to
achieve high capacity. The net result is that the inducer is one of the
critical points in the design of centrifugal compressors [8].

It might be mentioned here that in at least two respects the conditions
in an inducer are more favorable than in a two-dimensional cascade. The
fact that the streamlines in an actual inducer do not lie on cylindrical
surfaces is slightly favorable at the inducer tip. Probably more important
is the fact that each inducer blade is joined to an impeller blade and it is
therefore not necessary that the pressure on the two sides of the inducer
blade be equalized where the flow leaves the inducer (Kutta condition).
Tests of inducers as separate components [9,101 have neglected this im-
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portant consideration. In order that such tests of inducers should more
nearly approximate actual conditions of use, the inducer should be fol-
lowed by a relatively long section of straight radial blades.

It is sometimes stated that the work done by the inducer is a small
fraction of the work of the entire impeller And that therefore the effi-
ciency of the inducer is not of great consequence. On the other hand, the
result of stalling in the inducer is reflected in the flow through the entire
machine. In particular the diffuser cannot be expected to operate at high

4.00

3 .0 0 . . . . .- .. . . .. . . .

Turning angle = inle angl

- 2.00

0 20 40 60 80

a

Fig. J,7a. Lift coefficient for incompressible cascade with axial discharge.
Turning angle - inlet angle.

efficiency with the irregular velocity distribution at the diffuser entrance
which results from a stalled inducer. Experimental results justify this
point of view.

Relative Mach number at the inducer tip. If the velocity into the
inducer is assumed to be axial and uniform, the velocity triangle at the
outer radius of the inducer gives the following relation:

WI- V + U (7-4)

where W, is the velocity relative to the wheel, V, the absolute entrance
velocity, and U, the tangential velocity of the wheel at the inducer outer
radius.
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The following dimensionless relation can be derived from Eq. 7-4 by

introducing the velocity of sound:

r U / M__,,- Ms (7-5)
1 + 2 M,

where Us is the tip speed of the wheel, a* the velocity of sound at inlet
stagnation temperature, r, the outer radius of the inducer, r2 the outer

1.0
0.8

cm.m 0 r

0.4 - --.

00.2 0.4 0.6 0.8 1.0

n.Ir ri/r2

Fig. J,7b. Air capacity of axial inlet compressor.

radius of the wheel, M1, the relative Mach number at the inducer outer
radius, M, the absolute Mach number at the inlet, and y the ratio of
specific heats.

The mass rate of flow m into the impeller is given by the continuity
equation m = r(r? - r!)pIVI 

(7-6)

where rb is the inner (hub) radius of the inducer and p is the density at
the inlet. Now m* is defined by
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where p* is the density resulting from isentropic expansion from inlet
conditions to the velocity of sound, and c* is the velocity resulting from
isentropic expansion from inlet conditions to the velocity of sound.

Eq. 7-6 may be written in dimensionless form as

m+ +
m* =M -2 (7-7)

Fig. J,7b showing the relation between mass flow, radius ratio, Mach

0.3 -

0.2 - -
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r, /r 2

Fig. J,7c. Air capacity vs. inlet radius. rb/rs - 0.25; H,, - 1.3.

index, and relative inlet Mach number has been constructed from Eq.
7-5 and 7-6.

If values for U2/a ° and for rh/rI are assumed, a plot similar to Fig.
J,7b may be constructed from the data of Fig. J,7c. This plot shows the
variation of mass flow resulting from a change in r/r 2 and indicates that
for a given value of the relative Mach number there is a radius ratio
giving maximum mass flow.' Conversely, with a given mass flow, there is
a radius ratio which gives a minimum value of relative Mach number.
In centrifugal compressors for application to high speed aircraft, the rela-
tive Mach number is high, and it is therefore important that this quantity
be minimized. If inlet guide vanes are provided, it is possible to give

This analysis is essentially that given by Hawthorne in Il1).
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initial rotation to the air stream to reduce the relative Mach number at
the inlet. Analysis of the problem is algebraically complicated and is not
attempted here. However, it is clear that even with circulation of the
entering stream, limitation of flow and an inlet diameter for minimum
relative Mach number will exist.

The amount of inlet circulation which can be used is limited by con-
ditions at the hub of the inducer. If the inlet circulation r is such that

(a

.200
4-

0.95

'3 o,80
00

0.75

0.70

0 6 12 8 4 0

Angle, degrees
Fig. J,7d. Relative streamlines for flow through a centrifugal impeller 141.

Veh = Uh, then the work done by the inducer at the hub is zero. Further-
more it is clear from Eq. 3-7 that inlet circulation reduces the work done
by the impeller at a constant tip speed. A larger circulation results in
negative work done at the hub of the inducer, that is, this part acts as a
turbine. No doubt the inlet circulation can be made somewhat larger in
certain cases, notably those in which the ratio rb/ri is large.

If, for example, we assume 20 radial blades in the impeller and r, =
0.25r2, the work is reduced by the introduction of inlet circulation in the
ratio (0.90 - 0.06)/0.90 = 0.93 and to do the same work the impeller
tip speed must be increased approximately by 3.5 per cent. However,
the improved inducer efficiency resulting from (1) decreased relative
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Mach number, (2) decreased angle of turn, and (3) decreased lift coef-
ficient can easily offset the decrease in work done, and the resulting pres-
sure ratio obtained at the same tip speed is not necessarily less than that
without inlet circulation.

The impeller. The problem of incompressible two-dimensional poten-
tial flow through a rotating circular lattice of blades resembling a centrifu-
gal impeller has been considered by many writers [.,12,13,14,15,16,171.

___ 0.501.0 Relative hf~~

15 U-0.45
0.40I
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n.30
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0.65 412 8 4 0

Angle, degrees

Fig. J,7e. Lines of constant Mach number relative to impeller [41.

By the use of relaxation methods, Stanitz [4,13,181 has computed a num-
ber of cases for compressible flow through an impeller having radial and
logarithmic spiral blades. The slip factors previously mentioned are the
result of such consideration.

Fig. J,7d and J,7e taken from (41 show, respectively, streamlines
and lines of constant relative Mach number obtained by this method.
One of the conclusions from [41 is the possibility of radial inward flow
near the pressure face of the impeller blade at small flow rates and high
rotative speeds. The following simplified analysis is sufficient to demon-
strate this possibility.
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The flow in an impeller having radial vanes can be approximated by
assuming that the relative flow in the blade passages is radial and that
the absolute flow is irrotational. This latter consideration gives

dV, . 2rto (7-8)

where V, is the radial velocity, 6 is the angle with respect to an impeller
blade, and r is the radius under consideration.

This relation shows that the variation in radial velocity along a cir-
cumference is linear with angular position. It is clear that the Kutta con-
dition at the outer radius of the impeller blades cannot be satisfied with
this simplification since the velocity on opposite sides of a blade differs by
4zrw/Z at all points, and thus cannot be equal at the blade tips as re-
quired by the Kutta condition. The approximation therefore cannot be
expected to apply near the outer radius of the wheel. The approximation
does check well, however, with the relaxation analysis up to 80 per cent
of the outer radius of the blades for the cases considered by Stanitz. No
doubt, with larger numbers of blades, the approximation is good to
larger radii.

Eq. 7-8 reveals that the variation of radial velocity with angle is inde-
pendent of mass flow. Since the average value of the radial velocity de-
pends upon the mass flow, it is evident that as the mass flow is reduced,

the radial velocity at the pressure side of the blade must go to zero, and
with further reduction in flow the radial velocity must be negative. The
resulting flow has a permanent eddy, always containing the same fluid.
It is questionable whether such a flow can be stable. It seems more likely
that eddies of this nature would be shed downstream and reformed peri-
odically. In any case, there is no doubt that such a flow configuration is
undesirable. Fortunately, there is no great problem in making impeller
passages of sufficiently small cross section so that the average radial
velocity will be sufficient to prevent negative velocities at any point.

It is interesting to note that while increasing the number of impeller
blades produces a more uniform radial velocity and a decreased tendency
to reverse flow, the variation of radial velocity with angle is independent
of the number of blades. This consideration is of interest in the specu-
lation as to whether an impeller with an infinite number of blades can be
said to produce a one-dimensional flow pattern.

In the conventional axial flow compressor, the fluid is caused to flow
between blades in such a manner that the relative discharge is always
more nearly axial than the relative inlet to any blade row (except the
first row of entrance guide vanes). This means that there is a diffusion
process--a decrease in relative velocity with a corresponding increase in
pressure in each blade row. In fact in the axial flow machine the over-all
pressure rise is entirely due to the sum of these pressure rises accompany-
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ing decreases in relative velocity. In the centrifugal machine, on the other
hand, only a part of the pressure rise is due to diffusion, Another part,
of approximately equal magnitude, is due to what may be called cen-
trifugal action, that is, direct compression of the fluid due to the fact
that fluid enters at a small radius, is whirled, and then discharged at a
larger radius. This fact has an important bearing on the potentialities
of the centrifugal machine. The diffusion process is limited by the ability
of the shear forces to carry the boundary layer downstream against the
"adverse pressure gradient." If these forces are insufficient, the flow
direction in the boundary layer reverses and the high losses associated
with separation appear. It is thus necessary to design diffusing passages
in such a manner as to give shear forces an opportunity to act on the
boundary layer, that is to spread the pressure rise over a considerable
distance. Since at least a part of the losses is associated with shear forces,
it is not strange to find that in practice the diffusion process is never as
efficient as its inverse, the expansion process in a nozzle.

The process of compression by centrifugal action differs from that by
diffusion. The centrifugal compression is not due to a relative retardation
of the stream; furthermore, the forces due to centripetal acceleration act
on the boundary layer and the main stream alike, and hence do not de-
celerate the boundary layer, but merely produce a pressure gradient in
addition to that produced by the change in relative velocity. Except
insofar as the density of the boundary layer may differ from that of the
main stream, it may be stated that the pressure rise due to centrifugal
action has no effect on boundary layer separation. The significance of this
fact is that it appears possible to achieve high efficiency in that portion
of the compression process involving centrifugal action. For this reason
the centrifugal compressor may have potentialities of a higher efficiency
than the axial flow machine.

Secondary flow in impeller passages. Consideration of the boundary
layer on the back wall of a centrifugal impeller leads to the conclusion
that the boundary layer on this wall assumes a higher tangential com-
ponent of velocity than the main flow and can easily have a higher tan-
gential velocity than the wheel itself. This is a fortunate circumstance
since it indicates that the work done on this boundary layer is greater
than the work done on the main stream, which tends to improve the
distribution of kinetic energy entering the diffuser. In order to verify the
forward motion of the boundary layer, it is necessary merely to note that

the circumferential pressure gradient in the passage between the leading
and trailing sides of radial impeller blades can be looked upon as the
result of the Coriolis acceleration (2wV,). Since the radial velocity in the

boundary layer is less than that of the free stream, the boundary layer is
deflected forward under the influence of the pressure gradient.

If the inducer is stalled at the tip, the resulting low energy fluid will
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likewise be deflected in the direction of rotation, giving rise to secondary
circulation. Depending on how far this effect has progressed, the low
energy air may be discharged near the front wall, near the trailing side
of the blades, or near the back wall of the impeller. Any secondary circu-
lation of course greatly affects the performance of the diffuser.

The diffuser. Fluid leaves the impeller of a centrifugal compressor
at a velocity which is much higher than is desirable for use. For this
reason centrifugal machines are invariably provided with some form of
diffuser to slow down the flow. It is desirable that this process be as
nearly reversible as possible. If axial symmetry of the flow leaving the
impeller is assumed, the flow at this point is in the nature of a source-
vortex combination. This type of flow is particularly interesting since,
especially in the supersonic region, it exhibits unusual characteristics
(see [19,20,21]).

For steady frictionless compressible flow in a source-vortex the follow-
ing equations may be written:

Continuity.

m = p(2wrh) V sin a (7-9)

where m is the mass flow crossing the radius r per unit time, p is the
density at the radius r, h is the axial dimension of the passage, V is the
velocity, and a is the angle of the velocity vector with the tangential
direction.

If r* is used to denote the radius at which the Mach number is unity
and the asterisk is used to distinguish other conditions at this radius,
and if h is assumed constant,

prV sin a = p*r*V* sin a* (7-10)

Momentum. The conservation of angular momentum requires that

rV cosa = r*V* cos a* (7-11)

From Eq. 7-10 and 7-11 the following may be derived

p _ tana* ( g2(-

p* tana 1 + 7_ 1 MI (7-12)

r* sin a* pV M 2 - (7-13)
r sina p* -1 I MI/

From Eq. 7-12 and 7-13 the relation between r/r* and a may be de-

termined for any assumed value of a*. Fig. J,7f shows curves of these
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relationships. It will be noted that there is a minimum value of r/r*
below which no flow is possible. This limit line for the flow occurs when
M sin a = 1, that is when the radial component of the Mach number is
unity. At larger values of r/r* two flows are possible: a flow in which the
velocity increases with increasing radius and one in which the velocity
decreases with increasing radius. The latter type of flow is of interest in
connection with centrifugal machines since it provides diffusion without
vanes. Since the radial component of the Mach number is always less
than unity with this type of flow, no shock can exist without violating
the condition of axial symmetry. It thus appears possible with a vaneless
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Fig. J,71. Relation of angle of flow to radius for a compressible source-vortex.

diffuser to pass from supersonic to subsonic velocity without shock. Fur-
thermore, disturbances will be propagated upstream when the radial com-
ponent of the Mach number is less than unity; thus the entire flow in a
vaneless diffuser will change with a change in back pressure even though
the velocity is supersonic.

For aircraft purposes it is usually not feasible to use a vaneless dif-
fuser because of the large outer radius required. For example, in a typical
jet engine compressor the Mach number at the exit of the impeller is 1.10
and the absolute velocity at this point is 150 from the tangential direction.
Starting from these conditions, Fig. J,7f may be used to determine the
radius of a vaneless diffuser to reduce the Math number to 0.3. In this
case the outer radius would be more than three times the radius of the
impeller. A considerable saving in space can be achieved by using diffuser
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vanes to reduce the tangential velocity of the fluid leaving the impeller
more rapidly than can be accomplished in a free vortex flow. It is clear
that in order to accomplish this end it is necessary that the diffuser vanes
exert a torque on the fluid in a direction opposite to its rotation in order
to reduce its angular momentum.

A vaned diffuser is subject to limitations as to the angle of flow which
it can accept without flow separation and consequent lom. For this
reason it is pertinent to inquire into the change in angle of incidence
with changes in mas flow.

For a radial-bladed impeller, the tangential component of velocity
leaving the impeller is equal to the product of the slip factor r and the
wheel tip speed U. If the angle of the flow with the tangent is a then the
radial component of velocity leaving the impeller is r'U tan a. The mass
flow is equal to

m = pArU tan a (7-14)

where A is the area of the annulus at the wheel discharge and p is the
corresponding density.

We are interested in the change in a for a given percentage change in
mass flow or

do da
d(ln m) d[n (pArU tan a)]

or since A, , and U are constant

don m) d(ln p) d(ln tan a)_ _-- _ ... d----J - + (7-16)
d da da

If it is assumed that the change in p with a change in mass flow is
small, then

d(ln m) _ d(ln tan a) 2
da da sin 2a(

and
da I

d(ln m) - 2 sin 2a (7-18)

Thus the change in the angle of incidence of the diffuser blades for a
given change in the proportion of mass flow is a maximum for a = 45° .

Assuming that all diffusers accept a given variation in angle of inci-
dence without stall, then the maximum variation in mass flow for un-
stalled operation will be achieved if the machine is designed to have a
small angle at the entrance to the diffuser. Note that this condition is
diametrically opposed to the requirement of sufficiently high radial veloc-
ity to insure the absence of an eddy on the driving face of the impeller.

Design of a vaned diffuser. The essential problem of the vaned dif-
fuser is to arrange the blades (,r passages) in such a manner that the
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necessarily adverse pressure gradient will not result in flow separation,
An essentially one-dimensional approach to this problem is given by
Campbell [8]. This sort of analysis has given good results when supple-
mented by a large background of experience. A two-dimensional approach
has been proposed by Giraud [2].

In view of the large effects due to wall friction, as noted by Giraud [0],
it seems unlikely that any approach to the problem based on potential
flow is likely to give more than a rough indication of the actual flow.
Under these circumstances it seems probable that diffuser design will re-
main for some time essentially a trial-and-error process.

J,8. Stability. One of the difficulties, experienced in dynamic com-
pressors as opposed to volumetric types, is that operation is often found

Throttle valve

Compressor Plenum

Fig. J,8a. Diagrammatie compressor test setup.

to be unstable when the flow is reduced (holding constant rotative speed)
below a certain value. An analysis of this problem, which may help to
explain this phenomenon follows.

Fig. J,8a is a diagrammatic sketch of a compressor test setup. The
throttle valve is necessary to establish the desired pressure ratio across
the compressor, and the plenum provides a convenient spot to measure
pressures and temperatares. In some setups the plenum is replaced by a
relatively long pipe operating with a low gas velocity. Also, the throttle
valve and plenum are sometimes attached on the inlet side of the com-
pressor. None of these possible variations appreciably affects the analysis
which follows.
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Analysis of the actual arrangement would be too complex to be useful,
if it were possible, and simplification is in order. For this purpose we make
the following assumptions:

1. The density at any point within the compressor is a function of po-
sition only, at any running condition of the compressor. With this
assumption, at any instant the mass flow out of the compressor is
equal to the mass flow into the compressor.

2. The process in the plenum is assumed to be isothermal.
3. The characteristic pressure versus flow relation of the compressor is

assumed to be unaffected by transient phenomena, that is the com-
pressor is assumed to be in a quasi-steady state of operation at all
times.

4. Friction forces are assumed to be independent of time.

With these assumptions it is possible to make a diagram of the simpli-
fied system as in Fig. J,8b. The static pressure flow characteristic of the

3

12Actuator

Pipe Plenum Orifice

Fig. J,8b. Analogue of compressor test setup.

compressor is assumed to be supplied by an actuator between sections 1
and 2. The compressor is replaced by this actuator and a straight pipe in
which the flow is incompressible and which is proportioned so that the
rate of change of mass flow through the pipe, produced by a pressure
difference at the ends, is the same as the rate of change of mass flow
through the compressor for the same value of pressure difference (i.e.
the difference between the discharge pressure of the compressor and the
pressure for equilibrium).

It may be shown that the pipe thus dynamically simulates the com-
pressor if

(1) dl 8

where I is the length taken in the flow direction (for no rotation of the
compressor wheel), A is the area of cross section perpendicular to 1, and
p is the density at any point.
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The equation of motion for the air in the pipe may be written as

[p P1 -Ps A -?A'du (8-2)

01.p) J go dt

where pi, p2, and p3 are pressures measured as shown in Fig. J,8b. A is
the cross-sectional area of the pipe, p the density in the pipe, I the length
of the pipe, and u the velocity in the pipe (assumed uniform throughout
the pipe).

Since u = m./pA where m. is the mass flow through the pipe
(compressor), Eq. 8-2 may be written in dimensionless form

P - E = T -_ (8-3)
P, P1  0 )

where the characteristic time T of the compressor is given by

T = -+ -y--2 A a (8-4)

Assuming for simplicity that the process in the plenum is isothermal, the
rate of change of pressure in the plenum may be written in dimensionless
form as

d(pE) = F (! n. (8-5)

where mo is the mass flow per unit time in the orifice and the character-
istic frequency F of the plenum is given by

a 2 ) -,+1 ir 2 a
F=2 T / --2 -±1aD (8-6)

where 1V is the volume of the plenum.
There are two further relationships expressing, respectively, the char-

acteristic of the compressor

P_ = f -W (8-7)

and the characteristic of the orifice

Ps fa (8-8)
The flow through the orifice is assumed to respond instantaneously to
changes in pressure.

Fig. J,8c is a plot of f2 for a converging nozzle of unity coefficient.
Fig. J,8d is a typical plot of fl, the compressor characteristic.

These two functions are in general complicated, and when substituted
in Eq. 8-3 and 8-5 result in nonlinear equations which cannot be solved
analytically, since Eq. 8-6 represents an experimental function.
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31

P3
P1

2

Fig. J,8c. Orifice characteristic.

P2

P1

0
mclm*

Fig. i,8d. Static compressor characteristic.
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For purposes of studying stability to small disturbances, it suffices to
replace Eq. 8-6 and 8-7 with linear relationships near the equilibrium
point, provided that in the neighborhood of this point the two functions
are continuous and have continuous first derivatives. The equilibrium
point is defined by the relations

and

( R)ilu =()quill-~J

With these assumptions, Eq. 8-7 and 8-8 may be written
S= X (8-? 1)

iY') (8-12)
where

P2 (E)2u (8-13)

E - 0().'.I (8-14)

- (8-15)
eM km

1) - (8-16)

X fl (;)aM (8-17)

Y A, M~ at Qq (8-18)
It is seen that X and Y are the slopes of the characteristic curves of

the compressor and the orifice at the equilibrium point.
Using the new variables t and iq, Eq. 8-3 and 8-5 may be rewritten

d

t- Z3 Td (,71) (8-19)

d
) () = F(, 1 - 172) (8-20)

By the substitution of values from Eq. 8-11 and 8-12, Eq. 8-19 and
8-22 finally become

dtX -Y = T d't(1 (8-21)

diSdt = F( 1 -) (8-22)
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A solution of Eq. 8-21 and 8-22 is

ti; = Cie"
V12 = C~eY

where C, and Cs are arbitrary constants and b is given by the quadratic

V + F -- 0 (8-23)

of which the roots are

b (FGx)2X) (8-24)T / +j i (EY - XT)' + ET (YY - 1) (-4

It is clear that b may be real or complex, and that the criterion for
stability is that the real part of b must not be positive for either root.

If b is complex, the variation in t is oscillatory and stability is iadi-
cated when, and only when,

F X
Y - Y> 0 (8-25)

If b is real, stability is indicated when, and only when, both

F X
-Y T r

and the radical is not larger in absolute value than the first term in Eq.
8-24, that is, when

F(X _I <0(8-26)

It may be noted that Y, F, and T are always positive quantities so that
Eq. 8-25 can be written as

X < F-T > 0 (8-27)
Y

and Eq. 8-26 gives
X < Y (8-28)

Therefore, stability is assured if X is negative, i.e. a compressor with a
falling pressure flow characteristic is always stable. A rising characteristic
is also stable if the slope X is sufficiently small. How large the slope may
be without encountering instability depends on the characteristics of the
circuit into which the compressor is connected. The smaller the volume
of the plenum, the larger the permissible slope of the compressor charac-
teristic and, also, the smaller the slope of the orifice characteristic may be,
with the exception that if X > Y instability always results.

Two special cases are of interest. If the plenum is made very large,
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F becomes very small and, for a plenum of infinite size, stability can only
be asured if X < 0.

On the other hand, if the volume of the plenum is reduced to sero
the case is reduced to the equivalent of that involving an incompressible
fluid, and stability is assured if X < Y. Of course in this case the assump-
tion that the density within the compressor is invariant with time is
inappropriate.

In view of the very broad assumptions made in this analysis, quali-
tative agreement with experiment is perhaps all that can be expected.
However, it may be worth noting that if the controlling orifice is choked,
X = 1 and if the plenum is of such size that FT > 1, the criterion X > Y
will be sufficient to assure stability. It appears that with a centrifugal
compressor and a plenum of reasonable volume, say U _ (2r,)', the prod-
uct FT will indeed exceed unity, and stability might be expected to de-
pend only on the inequality X > Y.

Comparison with observations. In testing compressors, it is well
known that stable operation sometimes occurs with a rising pressure flow
characteristic. The analysis presented gives at least a qualitative notion
of the condition required for this possibility, namely a not-too-large
plenum between the controlling orifice -d the machine.

On the other hand, in centrifugal compressors, it is often noted that
the onset of instability is at or very near the flow for maximum pressure
ratio. This is especially true of machines having vaned diffusers when
operated at a high pressure ratio. With machines having vaneless dif-
fusers, it is usual to find stable operation with a rising characteristic.

It should be pointed out that it is not possible to discover experi-
mentally the shape of the unsdable part of the characteristic by the ordi-
nary test procedure. It may be inferred, however, that instability in
centrifugal machines is associated with violent stall, probably in the
vaned diffuser, and that the characteristic in the region of stall is either
discontinuous or at least very steeply rising.

It should be noted here that, in any compressor, there are a number
of passages operating in parallel with the same pressure difference across
the various passages. If each passage is assumed to have a pressure flow
characteristic similar to that of the complete compressor, which is as-
sumed to be a rising and falling characteristic having two values of flow
corresponding to a given pressure ratio as shown in Fig. J,8d, it is then
possible that the end condition of pressure and flow will be satisfied if
some of the passages are operating on the rising and some on the falling
part of the characteristic. Under these circumstances, instability could
result from flow in those passages which are on the rising part of their
characteristic, even though the characteristic of the entire machine might
be such as to indicate stable operation.

In any dynamic machine operating with a high relative Mach num-

( 579 )



J - THE CENTRIFUGAL COMPRESSOR

ber at the entrance to a set of blades, stall may be expected when the
angle of attack of the blades becomes only slightly larger than the design
angle. For this reason stall may be expected to occur in such machines
at a flow only slightly less than the design flow, or very close to the flow
for maximum efficiency. When the relative Mach number is sufficiently
low so that shock waves are absent, the angle of attack required to pro-
duce stall is of course greater, and a larger range of stable flow may be
expected. Since, in the centrifugal machine, high pressure ratio is always
associated with high Mach number at the diffuser entrance, and since
stall in the diffuser makes such a great difference in the over-all pressure
ratio of the machine, it is not surprising to find that instability in a cen-
trifugal machine with a vaned diffuser occurs very near the point of
maximum efficiency when operating at high pressure ratios, while at low
pressure ratios there is a more comfortable margin between the flow for
best efficiency and the flow at which instability occurs.

Since the axial-entry, radial-vaned centrifugal compressor has an
approximately constant temperature rise for all flows in the operating
region, it is inevitable that maximum efficiency and maximum pressure
will be at nearly the same flow. In this case the onset of instability is
likely to occur very close to the flow for maximum pressure when oper-
ating at high pressure, ratios. Such reasoning may account for the obser-
vation of stable regions of operation where the pressure-flow character-
istics have a positive slope at low speeds and low pressure ratios, as well
as the absence of such regions at high pressure ratios. Furthermore, a
stable region of operation in the region of positive characteristic slope is
invariably observed in machines having vaneless diffusers which presum-
ably do not stall under any conditions. It would seem that a desirable
margin of safety between the flow for maximum efficiency and the flow
which will produce stall can be achieved either by the use of a vaneless
diffuser or by operation at low relative Mach number. Either of these
solutions has serious disadvantages. There is also the possibility that with
a sufficiently high supersonic velocity entering the diffuser a design could
be worked out which would help to solve this problem.

It should not be assumed that stall somewhere in the machine will
always produce instability. Stall will only produce instability when it
produces a sufficiently large positive slope of the characteristic of the
entire machine. Stable operation can therefore be expected in the neigh-
borhood of stall if either (1) the stall is in only a portion of the machine
(as one stage of a multistage axial compressor) or (2) if the stall is not
sudden but progressive, as might be the case if stall started at the tip of
a blade and worked inward toward the root as flow was decreased.

J,9. Performance. Fig. J,9 shows a typical curve of performance of a
centrifugal compressor. As is characteristic of some highly developed
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machines, the efficiency holds up well at high pressure ratios and choking

is very abrupt. Also the flow range between surge and choke is quite small.

An interesting analytic possibility presents itself if the relation between

the minimum diffuser area and the area rr is known. If it is assumed that
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Fig. J,9. Typical performance of a centrifugal compressor.

the flow through the diffuser minimum area is at a uniform Mach num-

ber of unity at the choking condition, and since the mass flow and stag-

nation temperature at this point are known, the stagnation pressure may

be computed.
If it is further assumed that the stagnation pressure entering the dif-

fuser is unchanged for a small change in mass flow, the efficiency of the

impeller and of the diffuser may be separately evaluated for a point at
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slightly less flow than the choking flow. Application of this technique to
one of modern design has shown that for this particular case:

1. The diffuser efficiency is nearly constant over a range of Mach index
from 0.8 to 1.3.

2. The impeller efficiency is very high at a Mech index of 0.9 and falls off
at higher values.

With the value of stagnation pressure ahead of the diffuser available
from the above analysis, and assuming one-dimensional flow and an ap-
propriate slip factor, it is possible to estimate the Mach number and the
angle of the absolute velocity leaving the impeller.

Effect of Reynolds number. While there have been a number of at-
tempts to isolate the effect of Reynolds number in centrifugal compres-
sors [5,23], no very convincing data are known to the author. The problem
is complicated by the fact that if the Reynolds number is altered by
altering the pressure level, a considerable change in geometry due to
elastic distortion of the casing is possible. A number of small compressors
have been built with high efficiency but never quite as high as larger
compressors. A part of the difference is undoubtedly due to the fact that
the urge to obtain high efficiency is much greater in the case of large
machines. It is therefore very difficult to make good estimates of the
effect of Reynolds number at the present state of the art.

J,10. Limitations of the Centrifugal Compressor. A primary
limitation on the use of the centrifugal compressor has been its low effi-
ciency when operating at high pressure ratio. It has recently been found
possible by careful design to achieve reasonably high efficiency at pres-
sure ratios of four and over, and there seems reason to believe that at
least as good efficiency should be attainable at still greater speeds and
pressure ratios. The Mach number of the flow leaving an impeller oper-
ating at a pressure ratio of 4.0 is approximately 1.1. It is, of course, par-
ticularly difficult to handle fluid flowing at a Mach number so near unity,
and it seems entirely possible that the problem of diffusion would be
easier for a somewhat higher Mach number.

It appears characteristic of all dynamic compressors that the range of
mass flow between surge and choke becomes smaller as the machine is
designed for higher pressure ratio. There is reason to believe that in the
case of centrifugal machines this is associated with diffuser entrance
Mach numbers near unity. A Mach number of unity occurs at a pressure
ratio of approximately 3.0 for a radial bladed impeller. While it is possible
that increased range can be obtained at higher Mach numbers by means
of a properly designed supersonic diffuser, the limitation of range may be
the factor that ultimately determines the maximum pressure ratio of
practical machines.
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The tip speed required in a centrifugal compressor to produce a pres-
sure ratio of 4.0 with sea level atmospheric temperature is nearly as high
as can be tolerated from the point of view of centrifugal stress in the im-
peller. Any attempt to increase the pressure ratio of a centrifugal machine
must reckon with this stress problem. A material with a higher strength-
to-weight ratio than aluminum alloy or steel would make the problem of
higher tip speeds easier. In this connection it is interesting to note that
the highest wheel temperature (at the rim of the wheel) can be no more
than the arithmetic mean of the inlet and discharge stagnation temper-
atures in a radial-bladed machine. This temperature is moderate, and in
single-stage machines it has been found possible to use aluminum alloy
wheels without serious sacrifice in strength due to high temperature.

Forward-inclined impeller blades make possible higher pressure ratios
without increase in tip speed. However, departure from radial blades
involves bending due to centrifugal loads and consequently increased
stresses. In addition, it appears likely that forward-curving blades result
in increased difficulty with surging due to the characteristically higher
slope of the pressure-volume characteristic which they produce. In spite
of these theoretical drawbacks, it would be interesting to see wb..t could
be done with a machine with forward-curving impeller blades.

A large number of blades is assumed so that slip can be neglected,
and it is further assumed that the entrance to the impeller is axial with
a velocity V, = W2, where W, is the relative discharge velocity. With
these assumptions the fluid experiences deceleration relative to the wheel
only in the inducer section. A stream filament which entered the center
of the wheel would experience no diffusion, while a filament entering at
a larger radius would experience diffusion in the inducer only. The pres-
sure rise in the wheel is therefore essentially due to centrifugal action
under this assumption.

Consider the stream filament which enters the center of the wheel.
To, - To = T' ,- T, V1- 2

2 1 2gJc,

where T0, is the stagnation temperature which would be measured by a
thermometer moving with the wheel at the outer radius of the wheel.

It can be shown that
T21, - T 1 1 U2

T? - T? 2 V,

Since the velocity relative to the wheel is constant, T2', - T0 = T2 - TI,
and T', - T' is the temperature rise occurring in the wheel; by our
assumption all of this rise is due to centrifugal action.

It may be concluded that the fraction of the temperature rise occur-
ring in the wheel by centrifugal action depends upon the ratio Vo,/Ut.
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For the case of radial vanes, approximately one half of the temperature
rise occurs in the wheel and one half in the diffuser. A backward-leaning
impeller blade exit results in a larger fraction of the temperature rise
occurring in the wheel.

On the other hand, forward-leaning impeller blades result in a larger
proportion of the temperature rise in the diffuser. Thus the diffusion
problem becomes more acute with forward-leaning blades, and the ad-
vantages of centrifugal compression are less in this case.

Some of the greatest recent advances in centrifugal machines have
been in air-handling capacity. While advances in this respect are still
possible, they can be achieved only by one or more of the following
changes:

1. Increased relative inlet Mach number.
2. Increased inlet circulation in the direction of impeller rotation.
3. Increased ratio of inlet diameter to outside diameter.

There are obvious disadvantages to any of these changes, so that any
additional increase in the capacity of centrifugal machines is likely to be
at the expense of either efficiency or pressure ratio.

It is of course clear that a double-entry impeller has approximately
double the air-handling capacity of a single-sided impeller of the same
diameter.
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SECTION K

BLADING INTERACTION EFFECTS

IN TURBINES

H. KRAFT

K,1. Introduction. Gas turbine design practice developed quite
naturally from the art and science of the design of steam turbines. As the
steam turbine grew from its relatively crude beginnings to the efficient
machine of today the conceptions of its operating process had to be re-
fined from the original, one-dimensional picture, corrected by suitable
coefficients, to a simultaneous consideration of two, and later three,
dimensions.

As soon as good pictures of the two-dimensional flow pattern through
turbine elements such as stationary nozzles and rotating "buckets" or
"vanes" were available, it was rather obvious that the fourth important
basic variable, time, also needed to be considered. These patterns show
clearly that the deflection of the flow produced by the element in ques-
tion is never confined solely to the flow passage. Rather severe distortions
of the pattern exist for a good distance both upstream and downstream.
Fig. K, la shows the density contours, obtained by an interferometer [1],
of the stationary cascade representing the nozzle of an impulse turbine,
and Fig. K,lb gives the theoretically computed lines' of constant pres-
sure in the flow from the exit of a high deflection cascade.

There are many valid reasons for designing the stationary and the
rotating flow elements to perform at a close axial distance from each
other. It follows that interaction between these two flow elements must
exist and that this mutual interference must be a function of time.

The same conclusion can be arrived at by entirely practical consider-
ations. By far the vast majority of turbine elements perform at subsonic
velocities at which it is possible to find the flow performance of the ele-
ments by impact tube traverse. This method of "cascade testing" is wel
known and needs no further explanation. If such a test is carried through
with the necessary care, there is little reason to doubt that the perform-
ance thus found is that of the cascade in question under the given up-
stream and downstream boundary conditions. In general these are such
as to insure an evenly distributed upstream and downstream pressure.

By a method developed for the General Electric Company by Th. von Kdrm6n.
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Thus it is possible to find, by stationary testing, the flow losses of
cascades representing both the stationary and the rotating element of a
turbine. The two can also be tested working together as a running tur-
bine stage, a test of which can be carried through with a high degree of
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Fig. K, la. Density field at exit of turbine nozzle.

accuracy. This test will permit the researcher to eliminate, by measure-
ment and calculation, all losses extraneous to those represented by the
two cascades. It is then generally found that the flow losses in the run-ning stage exceed those of the combined cascades by an appreciable
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K • INTERA'CTION' EFFECTS IN TURBINES

amount, which ranges between one to three per cent of the stage energy.
The picture is not entirely clear-there are some cases where little dis-
crepancy is found..

Since the principal dkfference between the two types of tests is due to
the fact that in thestage test one cascade is passing the other at high
speed, it is natural tO conclude that mutual interference is the cause of a
flow loss, the nature of which is as yet not understood. There is a scarcity
of published material on this phenomenon.

In such a situation the only recourse open to the researcher is to
examine whatever evidence there is, draw whatever conclusions seem
justified, and make suggestions which may help the formation of a theory
that correctly describes the phenomennn. Design procedures to minimize
this loss will then easily follow.

K,2. Mechanism of Loss. An energy loss in a turbine is primarily
a loss in kinetic energy. It is well known that such a loss must result
from some viscosity action somewhere. The only exception is the kinetic
energy which leaves a given stage. This is accounted for as a loss for the
stage under consideration but should be available, at least theoretically,
for a succeeding stage.

Fluid friction originates in the boundary layer. It must be concluded
that the response of the boundary layers of the running stage to time
changes of the flow pattern is the key to an understanding of the mecha-
nism of the loss.

The boundary layer flow may be either laminar or turbulent. If, at
Reynolds numbers where a stable turbulent pattern may exist, a laminar
boundary layer is inaintained by proper contour design, a lower viscous
drag will be achieved. If, on the other hand, such a laminar boundary
layer is artificially "turbularized" an increased drag must be expected
and there is some evidence that such boundary layer changes actually
occur in turbines.

Of greater importance is the actual separation of the boundary layer
from the surface. It is known that in diffusers, where the static pressure is
expected to rise, such a separation can all but destroy the expected pres-
sure rise, with a disastrous, effect on the efficiency of the process.

Two conditions must. exist to induce a boundary layer to separate
from the wall. The pressure in the main stream outside the boundary
layer must actually rise, and the boundary layer flow itself must have
lost so much of its kinetic energy that the remainder, together with the
viscous drag of the main stream, cannot maintain equilibrium with the
rising pressure.

Euler's equation relates changes of velocity (both with space and with
time) to changes in pressure. If a flow boundary undergoes changes with
time and the law of continuity prevails, there are velocity changes due to
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the contour change and the passage of time. Both contribute to the
changes in pressure as shown in Eq. 2-1. It is an integration for one case
of Euler's equation attributed to Kelvin,

P T1- - + + p = const (2-1)
It is not difficult to visualize a boundary layer separation whenever the
pressure increases with time at a sufficiently high rate.

Consider the case of a running turbine. A row of moving blades passes
a row of stationary profiles. Each of the two rows deflects the flow oppo-
site to the other or, in aerodynamic language, the circulation of the ro-
tating cascade is opposite to that of the stationary row. A periodic mutual
interference must be expected which can but mean periodic pressure
changes along the profiles. The most obvious phenomenon to be expected
is the shedding of periodic vortices if the conditions for separation pre-
vail. This must be expected nearest the place where the interference is
highest, i.e. at the exit of the stationary element or at the entrance to
the rotating element. That such a rapid shedding of vortices is possible
has been demonstrated in the case of many acoustic phenomena.

The questions to be discussed are:

1. Can there be analogical phenomena in turbines involving much higher
amounts of energy than those responsible for the acoustic phenomenon?

2. Will such a periodic shedding of vortices occur as a forced phenomenon,
not at its own "natural" frequency?

3. Can such a flow pattern occur at frequencies sufficiently variable with
time or with such a large number of harmonics that the resulting loud
noise will not favor a particular frequency, or a tone, but will be
"white," as is the case in most applications?

4. What velocity patterns may be expected?

There is not enough experimental evidence available to answer any of
these questions; nevertheless a discussion of the various angles of the
phenomenon may be useful in estimating its importance in the design of
turbines.

Ideal, incompressible fluid flow. The simplest kind of fluid flow i6
that of an ideal, incompressible fluid flowing two-dimensionally. Further-
more it may be assumed that no rotation is present, except that repre-
sented by the circulation around the profiles. In other words the flow is
potential. Fig. K,2 represents the boundaries for the case of four moving
profiles extending for the same distance along the cascade axis as do
three stationary profiles. The flow pattern repeats itself in this case every
three stationary blade spacings. Within this distance it is distorted by
the relative position of stationary to rotating blades. Such periodicity,
if it does not rigorously exist, can at least be approximated with technical
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accuracy for all possible relative blade spacings. The total of the circu-
lations around the three stationary elements must equal the circulation
around the four corresponding moving elements if no change in tangential
component should appear between the entrance and the exit of the stage
as a whole. A study of the possible flow pattern in the vicinity of the

ig. K,2. Example of cascades of u turbine stage. 4 buckets for 3 nozzles.

trailing edge of the stationary and leading edge of the moving profile

reveals the following important points:

I. By adjusting the circulation around a given profile, one of the two
stagnation points can move to a desired location which may be either
a leading or trailing edge, but not both.

2. If a profile is designed to have stagnation points at the two edges in an
otherwise undisturbed stream, then the stagnation points must leave
this favored position in a stream distorted by another profile.

3. Within the condition that the sum of the circulations of the succeed-
ing profiles of one period is constant, the circulation around the single
profiles may vary with relative profile position, i.e. with time, to move
either stagnation point to a more probable position.

4. Within the condition that the sum of the flow quantities through the
succeeding passages of one period is constant, the flow through the
single passages must vary as the circulation varies to assure a constant
velocity vector at upstream and downstream infinity.

5. Thus it should be possible by proper adjustment along the cascade
axes of both flow and circulation to keep one stagnation point at a
position of the profile which may seem to be that preferred by the
flow of the actual viscous fluid. Therefore the pressure distribution
around the profiles depends to a large extent on the choice the fluid
makes in locating the stagnation points.

Therefore, a good prognostication of the boundary layer behavior
along a profile has to rely greatly on the ability of the designer to "out-
guess" the flowing medium. Such guesses, in turn, must conform with the
physical phenomenon establishing circulation.

The physical process that establishes the lift on a wing profile is well
known. As soon as boundary layers build up, the downstream stagnation
point becomes unstable. The more energetic flow of the boundary layer
on the suction side pushes that from the pressure side into the interior
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of the fluid. A "starting vortex" is formed and the stagnation point moves
to the trailing edge. The rotation of the starting vortex equals that of the
circulation which is established.

An airplane profile is, in general, a large structure. Its trailing edge
can be made rather well pointed. Thus the final location of the down-
stream stagnation point approaches rather closely the geometrical con-
dition which is known as the Joukowski condition. There is little doubt
as to its location. In turbine elements the trailing edge is much thicker
in per cent of the thickness of the profile and generally it is far from
being sharp. While it is physically small it is rather blunt-edged as far
as the flow is concerned. Here the Joukowski condition is a far less defi-
nite statement than it is in the case of the airfoil. This factor introduces
an element of uncertainty with respect to the actual existing circulation
of a turbine cascade, much more so because the flow field in the vicinity
of the trailing edge of a high deflection cascade is highly distorted.

The theory of vortex motion rules that in a frictionless fluid the
amount of rotation present must remain unchanged with time. Boundary
layer theory explains the generation of rotation within the fluid by a
separation of the boundary layer. It must be concluded that if the %ircu-
lation of a profile changes, rotation is insinuated into the flowing medium
which is kinetic energy which has not been used in the stage. It is cer-
tainly an energy loss for the stage in question, althoug, it is probably not
a total loss as far as succeeding stages are concerned.

However, it may well be asked whether the circulation actually does
change. As explained above, a certain transition process is necessary until
a starting vortex is formed, a process which must require some finite time.
In flow which is well below sonic velocity, it may safely be assumed that
the pressure changes and the resulting changes in velocity will establish
themselves instantaneously. The viscous actions within the boundary
layers must find a mechanism to escape the boundary layer to such an
extent that a change in circulation can result. It is difficult to assume
that such a process can take place without a time lag. Some students of
the problem even assert that, for very high frequencies, circulation cannot
change at all.

In a steam turbine as built today, the blade-passing frequency is be-
tween 5000 and 20,000 cycles per second. In from w to 1/20,000 of a
second the flow pattern must go through a complete cycle of shedding
the rotation of the starting vortex. This is a hard assumption to make
especially in view of the fact that the phenomenon is not symmetrical
to the trailing edge. It probably is easier to decrease rather than increase
circulation since the latter requires a change in flow pattern on the pres-
sure side of the profile.

It should be realized that the usual assumption of infinite velocity
of the flow around a sharp corner is modified by the presence of the
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boundary layer. The character of such a flow is rather that of a physical
vortex with a rotational vortex core (the boundary layer) and outside
of it a potential vortex field. Such a conception makes the assumption of
zero change in circulation much more plausible than the mere potential
pattern.

In the absence of reliable data it may be assumed that the true solu-
tion represents a compromise. It is as difficult to assume that circulation
will not change at all as it is to imagine that the full vortex shedding
phenomenon can take place in a very short time.

The establishment of a reliable theory proceeds best by using both
assumptions and comparing their results with known flow phenomena.

Viscosity. So far in this discussion viscosity entered the picture only
insofar as the flow pattern of the frictionless fluid affects the boundary
layer and, with it, the circulation. However, there is also a direct effect
of viscosity on the phenomenon. The boundary layers of the upstream
cascade unite at the trailing edge, establishing a wake which periodically
impinges on the downstream profiles. The flow through the downstream
cascade consists of regions of potential flow and of flow carrying rotation.
The wake decays with the distance from its trailing edge, i.e. it gains in
width and loses in velocity gradient. The total velocity head of the wake
is below that of its surroundings; hence it will definitely change the circu-
lation of the downstream profile if time permits.

The entrance contours of the downstream, moving, cascade are usually
designed to furnish the most favorable entrance flow pattern at a given
relative velocity between the entering fluid and the rotating profiles. A
large, slow wake flowing between high velocity fluid will thus impinge
sidewise into the convex wall of the profile. This phenomenon can be
readily observed in a water tank. It may be assumed that under the right
conditions such periodic impingement may even be beneficial. At the
entrance of the profile the wake momentarily moves the stagnation point
to the convex wall. This action superimposes on the normal swing of the
stagnation point and creates a hydrodynamic phenomenon that should
challenge any physicist in search of difficult problems. It is natural to
assume that a close study of the effect of the wake will be possible only
after a good theory of the ideal flow is available.

Compresibility. The preceding discussion assumed the fluid to be
incompressible. One consequence of this simplification is the assumption
of an infinitely high sound velocity or a Mach number of zero. While a
strictly incompressible theory assumes that every change in flow pattern
occurs instantaneously over the whole plane, a compressible theory must
consider the spreading of changes of the pattern at a finite velocity. Now,
there is not only a distortion due to position but also due to the passage
of time. While in the incompressible case there is strict periodicity of the
phenomenon, i.e. the flow patterns repeat themselves for the same stator
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to rotor position, this can only rarely be so in the compressible case. As
the Mach numbers increase toward unity, the flowing medium lags only
a little behind the changing flow pattern, and wave reflection and inter-
ferences will play a role. The problem is very complicated. Approximate
solutions of specific cases may be obtained in the near future by some of
the large scale electronic digital computers.

Three-dimensional flow. It is generally well realized that two-dimen-
sional considerations furnish only a good approximation to the working
process of an axial turbine. Flow components in the third dimension con-
tribute materially to the formation of the energy losses. Within the bound-
ary layer along the end walls of a turning passage there is a parasitic flow
pattern closely related to that of the induced drag of the airfoil of finite
length. This flow contributes very materially to the energy loss of cas-
cades of small profile length (radial height), a phenomenon which is a
direct function of the circulation around the profile. Periodic changes in
circulation of the profile can be expected to increase this type of loss.
The same can be expected of radial flow components which are either due
to profiles notably inclined to the radius or with a circulation varying
along the radius. In the former case it is obvious that if the leading edge
of the rotor and the trailing edge of the stator are mutually inclined a
radial sweep of the interference pattern must be expected, which may be
either detrimental or beneficial. In the case of radially variable circu-
lation any time changes of circulation, if they occur, must affect the radial
pattern. In a strictly axial machine, radial patterns do not in general con-
tribute to the working process. More light will be shed on these compli-
cated phenomena once a fair picture is obtained of the important two-
dimensional phenomenon.

The outline given of this problem so far is, by its very nature, vague
and general, and clearly indicates that it is a large and difficult one. It is
fitting to ask if there is experimental indication that periodic phenomena
of magnitude actually do exist.

K,3. Experimental Evidence. It has already been mentioned that
there is a "no man's land" of unexplored and unexplained flow losses in
turbine stages. However, the strongest argument that strong periodic
forces are at work appears in the record of fatigue failures of turbine
blading. Both stationary and rotating members are involved although
the failures of rotating blades are, of course, in the vast majority. Every
turbine designer is careful to hold the working stresses of turbine blading
well below what would normally be considered a very safe stress of the
naterial being used. This is a clear indication of a periodic change of the

force exerted by the working fluid on the blade. The change can be either
in direction or in magnitude, or both. The former may take place without
a time change of blade circulation, the latter involves circulation changes.
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A good description of periodic forces acting on the blades of a cen-
trifugal impeller is given in 121. Here a pump impeller was visually ob-
served by a moving picture camera rotating with the impeller. The flow
through the impeller was varied to produce a number of approach con-
ditions different from smooth entrance. The pictures clearly showed a
periodic formation of vortices. The reaction on one blade was measured
and appeared to be of a sinusoidal nature. It must be remarked that this
phenomenon was self-excited, i.e. the periodicity was due entirely to the
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Fig. K,3a. Steady state efficiency variation with bucket to nozzle position.

Approximately 3 buckets per 2 nozzles.

flow pattern itself. However, it must be considered that in the turbine
interference phenomenon one of the m~ost important effects is also the
periodic variation of the effective approach angle. The experiments were
made at a Reynolds number too low to be of great interest in turbine
design; and the Reynolds number will have an importar t effect on the
viscosity effects originating from the changing flow patterns.

The writer is familiar with a number of experiments on a single-stage
air turbine. Three rotating cascades (buckets) of identical contour but
varying through a range in scale of three to one were tested behind the
same stationary cascade. Thus the effect of one important variable, the
ratio of the number of stationary to that of rotating profiles was varied
in this ratio. The results were rather inconclusive insofar as no appreci-
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able variation in over-all performance was measured. It must be realized,

however, that such an experiment can never be made by changing merely

one variable. In order to make this test, not only the ratio of stator to

rotor blades was changed, but also the Reynolds number of the rotor

passages and their important aspect ratio. The fact that the over-all per-

formance did not change much would indicate that there must have been

At C
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0-0 0.5 1.0 1.5

Bucket position

C 
t

Fig. K,3b. Steady state pressure variation with bucket to nozzle position.
Approximately 3 buckets per 2 nozzles.

some change in the loss pattern which counteracted the substantial effects

which the latter two variables were expected to have. This short dis-

cussion may serve to illustrate the great difficulty the turbine designer

faces when he tries to dissect the turbine working proeess into partial,

interconnected phenomena.
Somewhat more interesting evidence was found by means of cascade

testing. Rotor cascades of different scale were tested behind a stator cas-

cade of correct angle at a large number of relative trailing to leading edge

positions, thus freezing, so to speak, the motion into a large number of
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steady state patterns. Impact tube traverseo and pressure measurements
were made. They both gave conclusive evidence that the flow pattern
undergoes large vhriations with relative position. Fig. K,3a, K,3b, K,3c,
and K,3d give representative samples of these results.
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0 1.0
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Fig. K,3c. Steady state efficiency variation with bucket to nozzle position.
Approximately 5 buckets per nozzle.

A further indication of the effect of flow patterns changing with time
is shown in Plate K,3 and Fig. K,3e which are taken from experiments
made at Volkenrode, Germany, by Zobel [3]. Interferometer pictures were
made of an airfoil oscillating in a wind tunnel, which clearly show the
effects of the unsteadiness of the flow. Specifically it is of interest to see
the large effect on the boundary layer on the suction side. The inter-
ferometer stripes are lines of constant air density. It is apparent that
here, in the case of low frequencies, the circulation does change.
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Fig. K,3d. Steady state static pressure variation with bucket to nozzle
position. Approximately 5 buckets per nozzle.

K,4. Theory. There are several theories for the flutter of airplane
wings, but very few for the running turbine stage. A pioneering approach
was made by Keller in his dissertatioL [4].

This theory assumes a periodic change of the circulation of the ro-
tating profiles. As described above, this change must be accompanied by
a periodic rotation (starting vortices) in the flow leaving the profiles.
The kinetic energy of this rotational flow pattern is taken as the loss
due to the blade interference. Since this theory does not concern itself
directly with the potential flow pattern involved in the interference phe-
nomenon, the author of this section began a study that was aimed at
computing such flow patterns.

The flow under investigation is the flow relative to the moving bucket
cascade, i.e. the flow as charted by an observer traveling with the buckets;
it is assumed to be incompressible, i.e. the Mach number is zero. Such a
flow pattern is obtained if a constant velocity vector equal to that of the
bucket speed is subtracted from the actual flow pattern; thus an absolute
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Fig. K,3e. Unsteady pressure distribution on a fluttering airfoil.

axial approach flow to the stationary nozzle cascade appears, relatively,
as composed of oblique parallel streamlines.

To simplify the computation the nozzle cascade is represented by a
row of single vortices, the effect of which is studied as they pass the
bucket entrance. Some distance downstream from the vortex centers, the
velocity distribution due to these vortices does not materially differ from
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FK

Fig. K,4a. Equivalent absolute nozzle flow furnished by vortices..

Fig. K,4b. Equivalent relative nozzle flow furnished by vortices

Fig. K,4c. Relative bucket cascade flow for undisturbed approach.

that measured behind an actual nozzle cascade. Fig. K,4a and K,4b ex-
plain this simplification. The moving cascade is the row of buckets, com-
puted for parallel approach, shown in Fig. K,4c. Its pattern is transformed
by conformal transformation into flow within a circle, the latter repre-
senting the bucket contour. (See Fig. K,4d.)
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The center is upstream infinity, while downstream infinity is located
very close to the circle. For this reason the flow approaching downstream
infinity is shown in Fig. K,4e enlarged approximately 10 times. This
situation illustrates the fact that, in a bucket cascade, upstream con-
ditions cannot affect the downstream pattern to any noticeable degree.
In the case of the straight undisturbed cascade flow the upstream infinity
pattern consists of a vortex source, while downstream infinity is a vortex
sink. Source and sink strength equal each other while upstream and
downstream vortex strength are given by the deflection diagram of the
cascade; their sum equals the circulation around the profile.

Fig. K,4d. Conformal transformation of flow shown in Fig. K,4c.

If the upstream flow is redirected by a vortex located in front of the
bucket cascade this vortex must contain twice the upstream vortex
strength of the previous case while at upstream infinity (center of circle)
is a vortex of the original strength but with opposite rotation. To main-
tain the unit circle as a streamline the vortex of double strength must be
reflected on the circle. By an additional simple transformation this pattern
can be transformed into another circle representing a number of adjoining
flow passages with the bucket contour. located in sequence on the circle
as shown in Fig. K,4f. A vortex path in front of the bucket cascade and
parallel to its axis appears as a closed curve surrounding the center. Along
this path one or more equally spaced vortices can be thought to move in
front of the images of the buckets. The effect of their motion on the
velocities along the bucket contours is computed.
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To do this, sequences of flow patterns corresponding to the passage
of one rotating profile past one stationary passage were calculated. This
is equivalent to an infinitely slow rotation of the bucket picture circle
around its center and thus around the stationary vortices. The pressure

Fig. K,4e. Enlarged downstream section of picture circle shown in Fig. K,4d.

along the rotating profile was then found from Kelvin's equation. The
pressure changes thus arrived at are very high, especially in the case
where many roating profiles pass few stationary blades.

The representation of the stationary nozzle profile by a single vortex
undoubtedly exaggerates the flow pattern. On the other hand, the compu-
tation permits the stationary "profile" to adapt its shape to the flow
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3'!

Fig. K,4f. Picture circle flow for 7 buckets and 2 nozzles.

4% 4

Ratio f nozle prfiles t ucet rfls,1:1

22L

At

- L A, A A

-- One period_-

Fig. K,4g. Pressure wave at two positions at convex entrance.
Ratio of nozzle profiles to bucket profiles, 1:1.

4-5o

-101 One period

Fig. K,4h. Pressure wave at two positions at convex entrance.
Ratio of nozzle profiles to bucket proflecs, 2:3.
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pattern while an actual profile will not adapt its shape. This factor niust
counteract the exaggerating effect of the single vortex. Samples of the
results thus obtained appear in Fig. K,4g, K,4h, K,4i, K,4j, K,4k, K,41,
and K,4m. They are derived for the assumption that the circulation does
not change during the period.

A and B refer to two positions on the convex bucket wall, A being
immediately after the leading edge and B at the entrance throat. S marks

SW

- One period--------...
--10- At A

Fig. K,4i. Pressure wave with space and time near convex leading edge.
Ratio of nozzle profiles to bucket profiles, 2:3.

+5- A

- 0 -

-- One period------
-0 At B

Fig. K,4j. Pressure wave with space and time near convex throat wall.
Ratio of nozzle profiles to bucket profiles, 2:3.

the steady state pressure characteristic obtained from the flow pattern
while T marks the additive time transient ao/at.

It is interesting to note that the curve for the 1:1 spacing ratio is
nearly sinusoidal which agrees with the experimental evidence that such
turbine stages emit an intolerable siren tone. It is also remarkable that,
while the "steady state" variation attenuates from the entrance edge to
the throat, the time transient does not. Thus the bucket, over almost the
whole entrance, is subjected to an extremely severe pressure pulse. The
good agreement in character with the measured curves shown in Fig.
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±10

.

-20

-30 VAt A

- - One period

Fig. K,4k. Pressure wave at two positions at convex entrance.
Ratio of nozzle profiles to bucket profiles, 1:4.

J-10

T

-SS

10.

One period
At A

Fig. K,41. Pressure wave with space and time near convex leading edge.
Ratio of nozzle profiles to bucket profiles, 1: 4.
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K,5 • CONCLUSIONS I
K,3a, K,3b, K,3c, and K,3d should also be noted. The latter are steady
state measurements of flow with viscosity and actual nozzle profiles while
the former apply to the ideal fluid using an idealized nozzle.

The theory can and will be refined and perfected for actual rigid
stationary blades.

Compre8aors. Practically all of the foregoing discussions of turbine
phenomena apply equally well to the axial compressor.

10

' 0

•- -~~ One period---

At B

Fig. K,4m. Pressure wave with space and time near convex throat wall.
Ratio of nozzle profiles to bucket profiles, 1:4.

K,5. Conclusions. The nature of the meager evidence so far avail-
able makes most conclusions conditional.

It can be taken for granted that there are large transient pressure
effects in turbine stages.

The computed magnitudes are necessarily modified by compressibility
and viscosity. The first will spread the harsh incompressible pattern; the
latter can modify it by jet separation and vortex formation.

The amount of separation to be expected is in doubt. At high fre-
quencies the fluid may be quite able to circumnavigate a sharp edge.

It is often proposed to resort to a variable or even a random spacing
of nozzles. The present state of knowledge of this problem makes such a
complication appear to be of doubtful value.

The most important variable next to the axial edge-to-edge clearance
is the relative spacing of stator and rotor profiles. The shape of the pro-
file is also of importance, as can readily be deduced if it is imagined that
the picture circle used in the calculation may represent, by stint of differ-
ent transformation functions, quite different profiles.

Boundary layers in rapid time transients should be studied both in
theory and experiment.
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turbine, axial, 453
blade performance, 453 vane flow, 17, 20

centrifugal stress, 494 vaneless diffuser, 57
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disk stress, 499 70
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